def _convert_to_numeric()

in src/sagemaker_sklearn_extension/feature_extraction/sequences.py [0:0]


    def _convert_to_numeric(self, X):
        numeric_sequences = []
        for string_sequence in X:
            if len(string_sequence) != 1:
                raise ValueError(
                    f"TSFlattener can process a single sequence column at a time, "
                    f"but it was given {len(string_sequence)} sequence columns.\n"
                )
            numeric_sequence = []
            if string_sequence[0] is not None:
                for s in string_sequence[0].split(","):
                    # Turn anything that can't be converted to a finite float to np.nan
                    try:
                        s = float(s)
                    except ValueError:
                        s = np.nan
                    if np.isinf(s):
                        s = np.nan
                    numeric_sequence.append(s)
            else:
                numeric_sequence.append(np.nan)
            numeric_sequence = self._truncate_sequence(numeric_sequence)
            numeric_sequences.append(numeric_sequence)
        # Convert to list of np.arrays
        numeric_sequences = [np.array(sequence) for sequence in numeric_sequences]
        return numeric_sequences