in src/sagemaker_sklearn_extension/feature_extraction/sequences.py [0:0]
def _convert_to_numeric(self, X):
numeric_sequences = []
for string_sequence in X:
if len(string_sequence) != 1:
raise ValueError(
f"TSFlattener can process a single sequence column at a time, "
f"but it was given {len(string_sequence)} sequence columns.\n"
)
numeric_sequence = []
if string_sequence[0] is not None:
for s in string_sequence[0].split(","):
# Turn anything that can't be converted to a finite float to np.nan
try:
s = float(s)
except ValueError:
s = np.nan
if np.isinf(s):
s = np.nan
numeric_sequence.append(s)
else:
numeric_sequence.append(np.nan)
numeric_sequence = self._truncate_sequence(numeric_sequence)
numeric_sequences.append(numeric_sequence)
# Convert to list of np.arrays
numeric_sequences = [np.array(sequence) for sequence in numeric_sequences]
return numeric_sequences