def main()

in sample_info/scripts/prepare_informativeness_orders_for_data_summarization.py [0:0]


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', '-c', type=str, required=True)
    parser.add_argument('--device', '-d', default='cuda', help='specifies the main device')
    parser.add_argument('--seed', type=int, default=42)

    # data parameters
    parser.add_argument('--dataset', '-D', type=str, default='mnist4vs9')
    parser.add_argument('--data_augmentation', '-A', action='store_true', dest='data_augmentation')
    parser.set_defaults(data_augmentation=False)
    parser.add_argument('--error_prob', '-n', type=float, default=0.0)
    parser.add_argument('--num_train_examples', type=int, default=None)
    parser.add_argument('--clean_validation', action='store_true', default=False)
    parser.add_argument('--resize_to_imagenet', action='store_true', dest='resize_to_imagenet')
    parser.set_defaults(resize_to_imagenet=False)
    parser.add_argument('--cache_dataset', action='store_true', dest='cache_dataset')
    parser.set_defaults(cache_dataset=False)

    # hyper-parameters
    parser.add_argument('--model_class', '-m', type=str, default='ClassifierL2')

    parser.add_argument('--l2_reg_coef', type=float, default=0.0)
    parser.add_argument('--lr', type=float, default=1e-2, help='Learning rate')

    parser.add_argument('--output_dir', '-o', type=str,
                        default='sample_info/results/data-summarization/orders/')
    parser.add_argument('--exp_name', '-E', type=str, required=True)

    # which measures to compute
    parser.add_argument('--which_measure', '-w', type=str, required=True, choices=['weights-plain', 'predictions'])

    # NTK arguments
    parser.add_argument('--t', '-t', type=int, default=None)
    parser.add_argument('--projection', type=str, default='none', choices=['none', 'random-subset', 'very-sparse'])
    parser.add_argument('--cpu', dest='cpu', action='store_true')
    parser.set_defaults(cpu=False)
    parser.add_argument('--large_model_regime', dest='large_model_regime', action='store_true')
    parser.add_argument('--random_subset_n_select', type=int, default=2000)
    parser.set_defaults(large_model_regime=False)

    args = parser.parse_args()
    print(args)

    # Load data
    train_data, val_data, test_data, _ = load_data_from_arguments(args, build_loaders=False)

    if args.cache_dataset:
        train_data = CacheDatasetWrapper(train_data)
        val_data = CacheDatasetWrapper(val_data)
        test_data = CacheDatasetWrapper(test_data)


    with open(args.config, 'r') as f:
        architecture_args = json.load(f)

    model_class = getattr(methods, args.model_class)

    model = model_class(input_shape=train_data[0][0].shape,
                        architecture_args=architecture_args,
                        l2_reg_coef=args.l2_reg_coef,
                        device=args.device,
                        seed=args.seed)
    model.eval()
    print("Number of parameters: ", utils.get_num_parameters(model))

    iter_idx = 0
    exclude_indices = []

    while len(exclude_indices) / len(train_data) < 0.95:
        print(f"Computing the order for iteration {iter_idx}")

        # Prepare the needed terms
        cur_train_data = SubsetDataWrapper(train_data, exclude_indices=exclude_indices)
        n = len(cur_train_data)
        ret = prepare_needed_items(model=model, train_data=cur_train_data, test_data=val_data,
                                   projection=args.projection, cpu=args.cpu)

        quantities = None
        order_file_name = None

        # weights without SGD
        if args.which_measure == 'weights-plain':
            _, quantities = weight_stability(t=args.t, n=n, eta=args.lr / n, init_params=ret['init_params'],
                                             jacobians=ret['train_jacobians'], ntk=ret['ntk'],
                                             init_preds=ret['train_init_preds'], Y=ret['train_Y'],
                                             l2_reg_coef=n * args.l2_reg_coef, continuous=False,
                                             without_sgd=True, model=model, dataset=cur_train_data,
                                             large_model_regime=args.large_model_regime,
                                             return_change_vectors=False)

            order_file_name = f'iter{iter_idx}-weights.pkl'

        # test prediction
        if args.which_measure == 'predictions':
            _, quantities = test_pred_stability(t=args.t, n=n, eta=args.lr / n, ntk=ret['ntk'],
                                                test_train_ntk=ret['test_train_ntk'],
                                                train_init_preds=ret['train_init_preds'],
                                                test_init_preds=ret['test_init_preds'],
                                                train_Y=ret['train_Y'],
                                                l2_reg_coef=n * args.l2_reg_coef,
                                                continuous=False)

            order_file_name = f'iter{iter_idx}-predictions.pkl'

        # save the order
        relative_order = np.argsort(utils.to_numpy(torch.stack(quantities).flatten()))
        absolute_order = [cur_train_data.include_indices[rel_idx] for rel_idx in relative_order]
        absolute_order = exclude_indices + absolute_order
        file_path = os.path.join(args.output_dir, args.exp_name, order_file_name)
        utils.make_path(os.path.dirname(file_path))
        with open(file_path, 'wb') as f:
            pickle.dump(absolute_order, f)

        # remove 5% percent of remaining samples
        exclude_count = int(0.05 * len(cur_train_data))
        new_exclude_indices = [cur_train_data.include_indices[rel_idx] for rel_idx in relative_order[:exclude_count]]
        exclude_indices.extend(new_exclude_indices)
        iter_idx += 1
        print(len(exclude_indices))