in sagemaker/source/dl_utils/dataset.py [0:0]
def _build_sensor_output_data(self, df, should_standardize, mean_dict):
labels = df['target']
df = df.drop(columns=['target'],
errors='ignore')
data = []
for sensor_header in self.sensor_headers:
data_i = df.iloc[:, df.columns.str.contains(sensor_header)].values
if should_standardize:
mean, std = mean_dict[sensor_header]
data_i = (data_i - mean)/std
data.append(data_i)
return np.array(data).transpose((1,2,0)), labels.values