tensorflow/inception/inception/slim/inception_model.py [283:297]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
          with tf.variable_scope('branch1x1'):
            branch1x1 = ops.conv2d(net, 320, [1, 1])
          with tf.variable_scope('branch3x3'):
            branch3x3 = ops.conv2d(net, 384, [1, 1])
            branch3x3 = tf.concat(3, [ops.conv2d(branch3x3, 384, [1, 3]),
                                      ops.conv2d(branch3x3, 384, [3, 1])])
          with tf.variable_scope('branch3x3dbl'):
            branch3x3dbl = ops.conv2d(net, 448, [1, 1])
            branch3x3dbl = ops.conv2d(branch3x3dbl, 384, [3, 3])
            branch3x3dbl = tf.concat(3, [ops.conv2d(branch3x3dbl, 384, [1, 3]),
                                         ops.conv2d(branch3x3dbl, 384, [3, 1])])
          with tf.variable_scope('branch_pool'):
            branch_pool = ops.avg_pool(net, [3, 3])
            branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
          net = tf.concat(3, [branch1x1, branch3x3, branch3x3dbl, branch_pool])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tensorflow/inception/inception/slim/inception_model.py [301:315]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
          with tf.variable_scope('branch1x1'):
            branch1x1 = ops.conv2d(net, 320, [1, 1])
          with tf.variable_scope('branch3x3'):
            branch3x3 = ops.conv2d(net, 384, [1, 1])
            branch3x3 = tf.concat(3, [ops.conv2d(branch3x3, 384, [1, 3]),
                                      ops.conv2d(branch3x3, 384, [3, 1])])
          with tf.variable_scope('branch3x3dbl'):
            branch3x3dbl = ops.conv2d(net, 448, [1, 1])
            branch3x3dbl = ops.conv2d(branch3x3dbl, 384, [3, 3])
            branch3x3dbl = tf.concat(3, [ops.conv2d(branch3x3dbl, 384, [1, 3]),
                                         ops.conv2d(branch3x3dbl, 384, [3, 1])])
          with tf.variable_scope('branch_pool'):
            branch_pool = ops.avg_pool(net, [3, 3])
            branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
          net = tf.concat(3, [branch1x1, branch3x3, branch3x3dbl, branch_pool])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



