ssd/ssd_inference.py [80:100]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    print("warming up the system")
    for i in range(1, 5):
        prediction_op = model.predict(data_iter)
        prediction_op.wait_to_read()

    print("Warm up done")

    time_readings = list()

    for i in range(1, times):
        start = time.time()
        prediction_op = model.predict(data_iter)
        prediction_op.wait_to_read()
        # results = prediction_op[0].asnumpy()
        # print results[0]
        end = time.time()
        time_readings.append(end - start)
        print("Inference time at iteration %d is %f ms \n" % (i, (end - start) * 1000))

        time_readings.sort()
    return time_readings
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



ssd/ssd_inference.py [110:130]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    print("warming up the system")
    for i in range(1, 5):
        prediction_op = model.predict(data_iter)
        prediction_op.wait_to_read()

    print("Warm up done")

    time_readings = list()

    for i in range(1, times):
        start = time.time()
        prediction_op = model.predict(data_iter)
        prediction_op.wait_to_read()
        # results = prediction_op.asnumpy()
        # print (results[0])
        end = time.time()
        time_readings.append(end - start)
        print("Inference time at iteration %d is %f ms \n" % (i, (end - start) * 1000))

        time_readings.sort()
    return time_readings
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



