in tensorflow/resnet/resnet_dist.py [0:0]
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# Create and start a server for the local task.
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_id)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# Assigns ops to the local worker by default.
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_id,
cluster=cluster)):
hps = resnet_model.HParams(batch_size=FLAGS.batch_size,
num_classes=NUM_LABELS,
min_lrn_rate=0.0001,
lrn_rate=0.1,
num_residual_units=5,
use_bottleneck=True,
weight_decay_rate=0.0002,
relu_leakiness=0.1,
optimizer='mom')
mode = 'train'
images, labels = synthetic_data(hps.batch_size)
model = resnet_model.ResNet(hps, images, labels, mode)
model.build_graph()
cross_entropy = model.cost
global_step = tf.Variable(0)
gradient_descent_opt = tf.train.GradientDescentOptimizer(LEARNING_RATE)
num_workers = len(worker_hosts)
sync_rep_opt = tf.train.SyncReplicasOptimizer(gradient_descent_opt, replicas_to_aggregate=num_workers,
replica_id=FLAGS.task_id, total_num_replicas=num_workers)
train_op = sync_rep_opt.minimize(cross_entropy, global_step=global_step)
init_token_op = sync_rep_opt.get_init_tokens_op()
chief_queue_runner = sync_rep_opt.get_chief_queue_runner()
init_op = tf.initialize_all_variables()
is_chief=(FLAGS.task_id == 0)
# Create a "supervisor", which oversees the training process.
sv = tf.train.Supervisor(is_chief=(FLAGS.task_id == 0),
init_op=init_op,
global_step=global_step)
# The supervisor takes care of session initialization, restoring from
# a checkpoint, and closing when done or an error occurs.
with sv.managed_session(server.target) as sess:
if is_chief:
sv.start_queue_runners(sess, [chief_queue_runner])
sess.run(init_token_op)
num_steps_burn_in = 10
total_duration = 0
total_duration_squared = 0
step = 0
lrn_rate = 0.1
while step <= 2000:
start_time = time.time()
_, step = sess.run([train_op, global_step], feed_dict={model.lrn_rate: lrn_rate})
duration = time.time() - start_time
examples_per_sec = hps.batch_size / float(duration)
format_str = ('Worker %d: %s: step %d, loss = NA'
'(%.4f examples/sec; %.3f sec/batch)')
if step > num_steps_burn_in:
print(format_str %
(FLAGS.task_id, datetime.now(), step,
examples_per_sec, duration))
sys.stdout.flush()
else:
print('Not considering burn-in step %d (%.4f samples/sec; %.3f sec/batch)' %
(step, examples_per_sec, duration))
sys.stdout.flush()
sv.stop()