def train()

in tensorflow/inception/inception/inception_distributed_train.py [0:0]


def train(target, dataset, cluster_spec):
  """Train Inception on a dataset for a number of steps."""
  # Number of workers and parameter servers are infered from the workers and ps
  # hosts string.
  num_workers = len(cluster_spec.as_dict()['worker'])
  num_parameter_servers = len(cluster_spec.as_dict()['ps'])
  # If no value is given, num_replicas_to_aggregate defaults to be the number of
  # workers.
  if FLAGS.num_replicas_to_aggregate == -1:
    num_replicas_to_aggregate = num_workers
  else:
    num_replicas_to_aggregate = FLAGS.num_replicas_to_aggregate

  # Both should be greater than 0 in a distributed training.
  assert num_workers > 0 and num_parameter_servers > 0, (' num_workers and '
                                                         'num_parameter_servers'
                                                         ' must be > 0.')

  # Choose worker 0 as the chief. Note that any worker could be the chief
  # but there should be only one chief.
  is_chief = (FLAGS.task_id == 0)

  # Ops are assigned to worker by default.
  with tf.device('/job:worker/task:%d' % FLAGS.task_id):
    # Variables and its related init/assign ops are assigned to ps.
    with slim.scopes.arg_scope(
        [slim.variables.variable, slim.variables.global_step],
        device=slim.variables.VariableDeviceChooser(num_parameter_servers)):
      # Create a variable to count the number of train() calls. This equals the
      # number of updates applied to the variables.
      global_step = slim.variables.global_step()

      # Calculate the learning rate schedule.
      num_batches_per_epoch = (dataset.num_examples_per_epoch() /
                               FLAGS.batch_size)
      # Decay steps need to be divided by the number of replicas to aggregate.
      decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay /
                        num_replicas_to_aggregate)

      # Decay the learning rate exponentially based on the number of steps.
      lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
                                      global_step,
                                      decay_steps,
                                      FLAGS.learning_rate_decay_factor,
                                      staircase=True)
      # Add a summary to track the learning rate.
      tf.scalar_summary('learning_rate', lr)

      # Create an optimizer that performs gradient descent.
      opt = tf.train.RMSPropOptimizer(lr,
                                      RMSPROP_DECAY,
                                      momentum=RMSPROP_MOMENTUM,
                                      epsilon=RMSPROP_EPSILON)

      images, labels = image_processing.distorted_inputs(
          dataset,
          batch_size=FLAGS.batch_size,
          num_preprocess_threads=FLAGS.num_preprocess_threads)

      # Number of classes in the Dataset label set plus 1.
      # Label 0 is reserved for an (unused) background class.
      num_classes = dataset.num_classes() + 1
      logits = inception.inference(images, num_classes, for_training=True)
      # Add classification loss.
      inception.loss(logits, labels)

      # Gather all of the losses including regularization losses.
      losses = tf.get_collection(slim.losses.LOSSES_COLLECTION)
      losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

      total_loss = tf.add_n(losses, name='total_loss')

      if is_chief:
        # Compute the moving average of all individual losses and the
        # total loss.
        loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
        loss_averages_op = loss_averages.apply(losses + [total_loss])

        # Attach a scalar summmary to all individual losses and the total loss;
        # do the same for the averaged version of the losses.
        for l in losses + [total_loss]:
          loss_name = l.op.name
          # Name each loss as '(raw)' and name the moving average version of the
          # loss as the original loss name.
          tf.scalar_summary(loss_name + ' (raw)', l)
          tf.scalar_summary(loss_name, loss_averages.average(l))

        # Add dependency to compute loss_averages.
        with tf.control_dependencies([loss_averages_op]):
          total_loss = tf.identity(total_loss)

      # Track the moving averages of all trainable variables.
      # Note that we maintain a 'double-average' of the BatchNormalization
      # global statistics.
      # This is not needed when the number of replicas are small but important
      # for synchronous distributed training with tens of workers/replicas.
      exp_moving_averager = tf.train.ExponentialMovingAverage(
          inception.MOVING_AVERAGE_DECAY, global_step)

      variables_to_average = (
          tf.trainable_variables() + tf.moving_average_variables())

      # Add histograms for model variables.
      for var in variables_to_average:
        tf.histogram_summary(var.op.name, var)

      # Create synchronous replica optimizer.
      opt = tf.train.SyncReplicasOptimizer(
          opt,
          replicas_to_aggregate=num_replicas_to_aggregate,
          replica_id=FLAGS.task_id,
          total_num_replicas=num_workers,
          variable_averages=exp_moving_averager,
          variables_to_average=variables_to_average)

      batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION)
      assert batchnorm_updates, 'Batchnorm updates are missing'
      batchnorm_updates_op = tf.group(*batchnorm_updates)
      # Add dependency to compute batchnorm_updates.
      with tf.control_dependencies([batchnorm_updates_op]):
        total_loss = tf.identity(total_loss)

      # Compute gradients with respect to the loss.
      grads = opt.compute_gradients(total_loss)

      # Add histograms for gradients.
      for grad, var in grads:
        if grad is not None:
          tf.histogram_summary(var.op.name + '/gradients', grad)

      apply_gradients_op = opt.apply_gradients(grads, global_step=global_step)

      with tf.control_dependencies([apply_gradients_op]):
        train_op = tf.identity(total_loss, name='train_op')

      # Get chief queue_runners, init_tokens and clean_up_op, which is used to
      # synchronize replicas.
      # More details can be found in sync_replicas_optimizer.
      chief_queue_runners = [opt.get_chief_queue_runner()]
      init_tokens_op = opt.get_init_tokens_op()
      clean_up_op = opt.get_clean_up_op()

      # Create a saver.
      saver = tf.train.Saver()

      # Build the summary operation based on the TF collection of Summaries.
      summary_op = tf.merge_all_summaries()

      # Build an initialization operation to run below.
      init_op = tf.initialize_all_variables()

      # We run the summaries in the same thread as the training operations by
      # passing in None for summary_op to avoid a summary_thread being started.
      # Running summaries and training operations in parallel could run out of
      # GPU memory.
      sv = tf.train.Supervisor(is_chief=is_chief,
                               logdir=FLAGS.train_dir,
                               init_op=init_op,
                               summary_op=None,
                               global_step=global_step,
                               saver=saver,
                               save_model_secs=FLAGS.save_interval_secs)

      tf.logging.info('%s Supervisor' % datetime.now())

      sess_config = tf.ConfigProto(
          allow_soft_placement=True,
          log_device_placement=FLAGS.log_device_placement)

      # Get a session.
      sess = sv.prepare_or_wait_for_session(target, config=sess_config)

      # Start the queue runners.
      queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS)
      sv.start_queue_runners(sess, queue_runners)
      tf.logging.info('Started %d queues for processing input data.',
                      len(queue_runners))

      if is_chief:
        sv.start_queue_runners(sess, chief_queue_runners)
        sess.run(init_tokens_op)

      # Train, checking for Nans. Concurrently run the summary operation at a
      # specified interval. Note that the summary_op and train_op never run
      # simultaneously in order to prevent running out of GPU memory.
      next_summary_time = time.time() + FLAGS.save_summaries_secs
      step = 0
      while (not sv.should_stop()) and step<=2000:
        try:

          start_time = time.time()
          run_metadata = tf.RunMetadata()        
          profile_step = 60
          trace_done = False
          
          if step == profile_step:
            tf.logging.info("Tracing at step %d" % step)
            loss_value, step = sess.run(
                    [train_op, global_step],
                    options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
                    run_metadata=run_metadata)
            trace_done = True
          else:
            loss_value, step = sess.run([train_op, global_step])

          duration = time.time() - start_time

          if trace_done:
            trace = timeline.Timeline(step_stats=run_metadata.step_stats)
            trace_file = open('/tmp/timeline.ctf.json', 'w')
            trace_file.write(trace.generate_chrome_trace_format())
            trace_file.close()

          assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
          if step > FLAGS.max_steps:
            break

          examples_per_sec = FLAGS.batch_size / float(duration)
          format_str = ('Worker %d: %s: step %d, loss = %.2f'
                        '(%.1f examples/sec; %.3f  sec/batch)')
          if step >= 10 and step != profile_step+1:
            tf.logging.info(format_str %
                            (FLAGS.task_id, datetime.now(), step, loss_value,
                             examples_per_sec, duration))
          else:
            tf.logging.info('Not considering step %d (%.1f samples/sec)' %
                            (step, examples_per_sec))


          # Determine if the summary_op should be run on the chief worker.
#           if is_chief and next_summary_time < time.time():
#             tf.logging.info('Running Summary operation on the chief.')
#             summary_str = sess.run(summary_op)
#             sv.summary_computed(sess, summary_str)
#             tf.logging.info('Finished running Summary operation.')
# 
#             # Determine the next time for running the summary.
#             next_summary_time += FLAGS.save_summaries_secs
        except:
          if is_chief:
            tf.logging.info('About to execute sync_clean_up_op!')
            sess.run(clean_up_op)
          raise

      # Stop the supervisor.  This also waits for service threads to finish.
      sv.stop()

      # Save after the training ends.
      if is_chief:
        saver.save(sess,
                   os.path.join(FLAGS.train_dir, 'model.ckpt'),
                   global_step=global_step)