def topK()

in python/dglke/models/infer.py [0:0]


    def topK(self, head=None, tail=None, bcast=False, pair_ws=False, k=10):
        if head is None:
            head = F.arange(0, self.emb.shape[0])
        else:
            head = F.tensor(head)
        if tail is None:
            tail = F.arange(0, self.emb.shape[0])
        else:
            tail = F.tensor(tail)

        head_emb = self.emb[head]
        tail_emb = self.emb[tail]
        if pair_ws is True:
            result = []
            batch_size = self.batch_size
            # chunked cal score
            score = []
            num_head = head.shape[0]
            num_tail = tail.shape[0]
            for i in range((num_head + batch_size - 1) // batch_size):
                sh_emb = head_emb[i * batch_size : (i + 1) * batch_size \
                                                   if (i + 1) * batch_size < num_head \
                                                   else num_head]
                sh_emb = F.copy_to(sh_emb, self.device)
                st_emb = tail_emb[i * batch_size : (i + 1) * batch_size \
                                                   if (i + 1) * batch_size < num_head \
                                                   else num_head]
                st_emb = F.copy_to(st_emb, self.device)
                score.append(F.copy_to(self.sim_func(sh_emb, st_emb, pw=True), F.cpu()))
            score = F.cat(score, dim=0)

            sidx = F.argsort(score, dim=0, descending=True)
            sidx = sidx[:k]
            score = score[sidx]
            result.append((F.asnumpy(head[sidx]),
                           F.asnumpy(tail[sidx]),
                           F.asnumpy(score)))
        else:
            num_head = head.shape[0]
            num_tail = tail.shape[0]
            batch_size = self.batch_size

            # chunked cal score
            score = []
            for i in range((num_head + batch_size - 1) // batch_size):
                sh_emb = head_emb[i * batch_size : (i + 1) * batch_size \
                                            if (i + 1) * batch_size < num_head \
                                            else num_head]
                sh_emb = F.copy_to(sh_emb, self.device)
                s_score = []
                for j in range((num_tail + batch_size - 1) // batch_size):
                    st_emb = tail_emb[j * batch_size : (j + 1) * batch_size \
                                                    if (j + 1) * batch_size < num_tail \
                                                    else num_tail]
                    st_emb = F.copy_to(st_emb, self.device)
                    s_score.append(F.copy_to(self.sim_func(sh_emb, st_emb), F.cpu()))
                score.append(F.cat(s_score, dim=1))
            score = F.cat(score, dim=0)

            if bcast is False:
                result = []
                idx = F.arange(0, num_head * num_tail)
                score = F.reshape(score, (num_head * num_tail, ))

                sidx = F.argsort(score, dim=0, descending=True)
                sidx = sidx[:k]
                score = score[sidx]
                sidx = sidx
                idx = idx[sidx]
                tail_idx = idx % num_tail
                idx = floor_divide(idx, num_tail)
                head_idx = idx % num_head

                result.append((F.asnumpy(head[head_idx]),
                           F.asnumpy(tail[tail_idx]),
                           F.asnumpy(score)))

            else: # bcast at head
                result = []
                for i in range(num_head):
                    i_score = score[i]

                    sidx = F.argsort(i_score, dim=0, descending=True)
                    idx = F.arange(0, num_tail)
                    i_idx = sidx[:k]
                    i_score = i_score[i_idx]
                    idx = idx[i_idx]

                    result.append((np.full((k,), F.asnumpy(head[i])),
                                  F.asnumpy(tail[idx]),
                                  F.asnumpy(i_score)))

        return result