def forward()

in python/dgllife/model/model_zoo/jtvae.py [0:0]


    def forward(self, cand_batch, tree_mess, device='cpu'):
        fatoms, fbonds = [], []
        in_bonds, all_bonds = [], []
        # Ensure index 0 is vec(0)
        mess_dict, all_mess = {}, [torch.zeros(self.hidden_size).to(device)]
        total_atoms = 0
        scope = []

        for e, vec in tree_mess.items():
            mess_dict[e] = len(all_mess)
            all_mess.append(vec)

        for mol, all_nodes, _ in cand_batch:
            n_atoms = mol.GetNumAtoms()

            for atom in mol.GetAtoms():
                fatoms.append(torch.Tensor(self.atom_featurizer(atom)))
                in_bonds.append([])

            for bond in mol.GetBonds():
                a1 = bond.GetBeginAtom()
                a2 = bond.GetEndAtom()
                x = a1.GetIdx() + total_atoms
                y = a2.GetIdx() + total_atoms
                # Here x_nid,y_nid could be 0
                x_nid, y_nid = a1.GetAtomMapNum(), a2.GetAtomMapNum()
                x_bid = all_nodes[x_nid - 1]['idx'] if x_nid > 0 else -1
                y_bid = all_nodes[y_nid - 1]['idx'] if y_nid > 0 else -1

                bfeature = torch.Tensor(self.bond_featurizer(bond))

                b = len(all_mess) + len(all_bonds)  # bond idx offseted by len(all_mess)
                all_bonds.append((x, y))
                fbonds.append(torch.cat([fatoms[x], bfeature], 0))
                in_bonds[y].append(b)

                b = len(all_mess) + len(all_bonds)
                all_bonds.append((y, x))
                fbonds.append(torch.cat([fatoms[y], bfeature], 0))
                in_bonds[x].append(b)

                if x_bid >= 0 and y_bid >= 0 and x_bid != y_bid:
                    if (x_bid, y_bid) in mess_dict:
                        mess_idx = mess_dict[(x_bid, y_bid)]
                        in_bonds[y].append(mess_idx)
                    if (y_bid, x_bid) in mess_dict:
                        mess_idx = mess_dict[(y_bid, x_bid)]
                        in_bonds[x].append(mess_idx)

            scope.append((total_atoms, n_atoms))
            total_atoms += n_atoms

        total_bonds = len(all_bonds)
        total_mess = len(all_mess)
        fatoms = torch.stack(fatoms, 0).to(device)
        fbonds = torch.stack(fbonds, 0).to(device)
        agraph = torch.zeros(total_atoms, MAX_NB).long().to(device)
        bgraph = torch.zeros(total_bonds, MAX_NB).long().to(device)
        tree_message = torch.stack(all_mess, dim=0)

        for a in range(total_atoms):
            for i, b in enumerate(in_bonds[a]):
                if i == MAX_NB:
                    break
                agraph[a, i] = b

        for b1 in range(total_bonds):
            x, y = all_bonds[b1]
            for i, b2 in enumerate(in_bonds[x]):  # b2 is offseted by len(all_mess)
                if i == MAX_NB:
                    break
                if b2 < total_mess or all_bonds[b2 - total_mess][0] != y:
                    bgraph[b1, i] = b2

        binput = self.W_i(fbonds)
        graph_message = F.relu(binput)

        for i in range(self.depth - 1):
            message = torch.cat([tree_message, graph_message], dim=0)
            nei_message = index_select_ND(message, 0, bgraph)
            nei_message = nei_message.sum(dim=1)
            nei_message = self.W_h(nei_message)
            graph_message = F.relu(binput + nei_message)

        message = torch.cat([tree_message, graph_message], dim=0)
        nei_message = index_select_ND(message, 0, agraph)
        nei_message = nei_message.sum(dim=1)
        ainput = torch.cat([fatoms, nei_message], dim=1)
        atom_hiddens = F.relu(self.W_o(ainput))

        mol_vecs = []
        for st, le in scope:
            mol_vec = atom_hiddens.narrow(0, st, le).sum(dim=0) / le
            mol_vecs.append(mol_vec)

        mol_vecs = torch.stack(mol_vecs, dim=0)
        return mol_vecs