void InitDescriptors()

in src/operator/nn/cudnn/cudnn_convolution-inl.h [411:612]


  void InitDescriptors(const std::vector<TShape>& in_shape,
                       const std::vector<TShape>& out_shape,
                       cudnnDataType_t cudnn_forward_compute_type,
                       cudnnDataType_t cudnn_backward_compute_type) {
    using namespace mshadow;
    size_t expected = param_.no_bias ? 2 : 3;
    CHECK_EQ(in_shape.size(), expected);
    CHECK_EQ(out_shape.size(), 1U);

    TShape dshape = in_shape[conv::kData];
    TShape wshape = in_shape[conv::kWeight];
    TShape oshape = out_shape[conv::kOut];
    TShape dstride, ostride;
#if CUDNN_MAJOR <= 6
    wshape[0] /= param_.num_group;
#endif

#if CUDNN_MAJOR <= 5
      // As of cuDNN_v6, the unsuffixed version of cudnnSetConvolution2dDescriptor()
      // takes an additional 'computeType' parameter to set the precision of the
      // convolution calculation.  Supply this method signature for cuDNN versions < 6.
#define cudnnSetConvolution2dDescriptor(cdesc, p0, p1, s0, s1, d0, d1, m, ct) \
        cudnnSetConvolution2dDescriptor(cdesc, p0, p1, s0, s1, d0, d1, m)
#endif
    if (param_.kernel.ndim() == 1 || param_.kernel.ndim() == 2) {
      // 1d or 2d conv
      auto pad = param_.kernel.ndim() == 2 ? param_.pad : TShape({0, param_.pad[0]});
      auto stride = param_.kernel.ndim() == 2 ? param_.stride : TShape({1, param_.stride[0]});
      auto dilate = param_.kernel.ndim() == 2 ? param_.dilate : TShape({1, param_.dilate[0]});
      CUDNN_CALL(cudnnSetConvolution2dDescriptor(forward_conv_desc_,
                                               pad[0],
                                               pad[1],
                                               stride[0],
                                               stride[1],
                                               dilate[0],
                                               dilate[1],
                                               CUDNN_CROSS_CORRELATION,
                                               cudnn_forward_compute_type));
      CUDNN_CALL(cudnnSetConvolution2dDescriptor(back_conv_desc_,
                                               pad[0],
                                               pad[1],
                                               stride[0],
                                               stride[1],
                                               dilate[0],
                                               dilate[1],
                                               CUDNN_CROSS_CORRELATION,
                                               cudnn_backward_compute_type));
      CUDNN_CALL(cudnnSetConvolution2dDescriptor(back_conv_desc_w_,
                                               pad[0],
                                               pad[1],
                                               stride[0],
                                               stride[1],
                                               dilate[0],
                                               dilate[1],
                                               CUDNN_CROSS_CORRELATION,
                                               cudnn_backward_compute_type));
#if CUDNN_MAJOR < 5
      // As of cuDNN_v5, cudnnSetFilter4dDescriptor() takes a format parameter.
      // Supply this method signature for cuDNN versions < 5.
#define cudnnSetFilter4dDescriptor(fdesc, dt, f, w0, w1, w2, w3) \
        cudnnSetFilter4dDescriptor(fdesc, dt, w0, w1, w2, w3)
      CHECK_EQ(format_, CUDNN_TENSOR_NCHW) << "CuDNN V4 and earlier only supports NCHW layout";
#endif
      if (param_.kernel.ndim() == 2) {
        wshape = ConvertLayout(wshape.get<4>(), param_.layout.value(), kNCHW);
        dstride = ConvertLayout(Strides<4>(dshape), param_.layout.value(), kNCHW);
        dshape = ConvertLayout(dshape.get<4>(), param_.layout.value(), kNCHW);
        ostride = ConvertLayout(Strides<4>(oshape), param_.layout.value(), kNCHW);
        oshape = ConvertLayout(oshape.get<4>(), param_.layout.value(), kNCHW);
      } else {
        wshape = ConvertLayout(wshape.get<3>(), param_.layout.value(), kNCW);
        wshape = TShape({wshape[0], wshape[1], 1, wshape[2]});
        dstride = ConvertLayout(Strides<3>(dshape), param_.layout.value(), kNCW);
        dstride = TShape({dstride[0], dstride[1], dstride[1], dstride[2]});
        dshape = ConvertLayout(dshape.get<3>(), param_.layout.value(), kNCW);
        dshape = TShape({dshape[0], dshape[1], 1, dshape[2]});
        ostride = ConvertLayout(Strides<3>(oshape), param_.layout.value(), kNCW);
        ostride = TShape({ostride[0], ostride[1], ostride[1], ostride[2]});
        oshape = ConvertLayout(oshape.get<3>(), param_.layout.value(), kNCW);
        oshape = TShape({oshape[0], oshape[1], 1, oshape[2]});
      }
      CUDNN_CALL(cudnnSetFilter4dDescriptor(filter_desc_,
                                            dtype_,
                                            format_,
                                            wshape[0],
                                            wshape[1],
                                            wshape[2],
                                            wshape[3]));

    } else if (param_.kernel.ndim() == 3) {
      // 3d conv
      #if CUDNN_MAJOR >= 5
      CHECK_EQ(param_.layout.value(), kNCDHW) << "CuDNN only support 3D conv with NCDHW layout";
      std::vector<int> wshape_buffer(wshape.ndim());
      CUDNN_CALL(cudnnSetFilterNdDescriptor(filter_desc_,
                                          dtype_,
                                          CUDNN_TENSOR_NCHW,
                                          static_cast<int>(wshape.ndim()),
                                          CastTShapeToIntPtr(wshape, &wshape_buffer)));
      #else
      LOG(FATAL) << "Only support CUDNN V5 for 3D convolution";
      #endif
      CUDNN_CALL(cudnnSetConvolutionNdDescriptor(forward_conv_desc_,
                                               3,
                                               param_pad_.data(),
                                               param_stride_.data(),
                                               param_dilate_.data(),
                                               CUDNN_CROSS_CORRELATION,
                                               cudnn_forward_compute_type));

      CUDNN_CALL(cudnnSetConvolutionNdDescriptor(back_conv_desc_,
                                               3,
                                               param_pad_.data(),
                                               param_stride_.data(),
                                               param_dilate_.data(),
                                               CUDNN_CROSS_CORRELATION,
                                               cudnn_backward_compute_type));

      CUDNN_CALL(cudnnSetConvolutionNdDescriptor(back_conv_desc_w_,
                                               3,
                                               param_pad_.data(),
                                               param_stride_.data(),
                                               param_dilate_.data(),
                                               CUDNN_CROSS_CORRELATION,
                                               cudnn_backward_compute_type));

      dstride = ConvertLayout(Strides<5>(dshape), param_.layout.value(), kNCDHW);
      dshape = ConvertLayout(dshape.get<5>(), param_.layout.value(), kNCDHW);
      ostride = ConvertLayout(Strides<5>(oshape), param_.layout.value(), kNCDHW);
      oshape = ConvertLayout(oshape.get<5>(), param_.layout.value(), kNCDHW);
    }
    // Set "allow tensor core" flag in convolution descriptors, if available.
    #if CUDNN_MAJOR >= 7
      cudnnMathType_t math_type = cudnn_tensor_core_ ? CUDNN_TENSOR_OP_MATH
                                                    : CUDNN_DEFAULT_MATH;
      #if CUDNN_VERSION >= 7200
            if (GetEnvAllowTensorCore() && GetEnvAllowTensorCoreConversion() &&
                (DataType<DType>::kFlag != kFloat16))
              math_type = CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION;
      #endif
      CUDNN_CALL(cudnnSetConvolutionMathType(forward_conv_desc_, math_type));
      CUDNN_CALL(cudnnSetConvolutionMathType(back_conv_desc_, math_type));
      CUDNN_CALL(cudnnSetConvolutionMathType(back_conv_desc_w_, math_type));
      CUDNN_CALL(cudnnSetConvolutionGroupCount(forward_conv_desc_, param_.num_group));
      CUDNN_CALL(cudnnSetConvolutionGroupCount(back_conv_desc_, param_.num_group));
      CUDNN_CALL(cudnnSetConvolutionGroupCount(back_conv_desc_w_, param_.num_group));
    #endif

  #if CUDNN_MAJOR <= 6
    dshape[1] /= param_.num_group;
    oshape[1] /= param_.num_group;
  #endif
    weight_offset_ = wshape.Size();
    data_offset_ = dstride[1] * dshape[1];
    out_offset_ = ostride[1] * oshape[1];

    std::vector<int> dshape_buffer(dshape.ndim());
    nnvm::ShapeTypeCast(dshape.begin(), dshape.end(), dshape_buffer.data());
    std::vector<int> dstride_buffer(dstride.ndim());
    nnvm::ShapeTypeCast(dstride.begin(), dstride.end(), dstride_buffer.data());

    CUDNN_CALL(cudnnSetTensorNdDescriptor(in_desc_,
                                          dtype_,
                                          static_cast<int>(dshape.ndim()),
                                          dshape_buffer.data(),
                                          dstride_buffer.data()));

    std::vector<int> oshape_buffer(oshape.ndim());
    nnvm::ShapeTypeCast(oshape.begin(), oshape.end(), oshape_buffer.data());
    std::vector<int> ostride_buffer(ostride.ndim());
    nnvm::ShapeTypeCast(ostride.begin(), ostride.end(), ostride_buffer.data());
    CUDNN_CALL(cudnnSetTensorNdDescriptor(out_desc_,
                                          dtype_,
                                          static_cast<int>(oshape.ndim()),
                                          oshape_buffer.data(),
                                          ostride_buffer.data()));

    if (!param_.no_bias) {
      TShape bias = in_shape[conv::kBias];
      #if CUDNN_MAJOR >= 7
      bias_offset_ = bias[0];
      std::vector<int> bias_shape = {1,
                                     static_cast<int>(bias[0]),
                                     1, 1};
      #else
      bias_offset_ = bias[0] / param_.num_group;
      std::vector<int> bias_shape = {1,
                                     static_cast<int>(bias[0] / param_.num_group),
                                     1, 1};
      #endif
      std::vector<int> bias_stride = {static_cast<int>(bias_offset_), 1, 1, 1};
      if (param_.kernel.ndim() == 3) {
        bias_shape.push_back(1);
        bias_stride.push_back(1);
      }
      CUDNN_CALL(cudnnSetTensorNdDescriptor(bias_desc_,
                                          dtype_,
                                          static_cast<int>(bias_shape.size()),
                                          &bias_shape[0],
                                          &bias_stride[0]));
    }
  }