in src/operator/nn/convolution.cc [86:274]
static bool ConvolutionShape(const nnvm::NodeAttrs& attrs,
std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape) {
using namespace mshadow;
const ConvolutionParam& param_ = nnvm::get<ConvolutionParam>(attrs.parsed);
if (!param_.no_bias) {
CHECK_EQ(in_shape->size(), 3U) << "Input:[data, weight, bias]";
} else {
CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]";
}
// CHECK_EQ(out_shape->size(), 1) << "Output: [output]";
out_shape->resize(1, TShape());
const TShape &dshp = (*in_shape)[conv::kData];
if (dshp.ndim() == 0) return false;
if (param_.kernel.ndim() == 1) {
// 1d conv
CHECK_EQ(dshp.ndim(), 3U) << "Input data should be 3D in batch-num_filter-x";
Shape<3> dshape = ConvertLayout(dshp.get<3>(), param_.layout.value(), kNCW);
Shape<3> wshape = Shape3(param_.num_filter / param_.num_group, dshape[1] / param_.num_group,
param_.kernel[0]);
wshape = ConvertLayout(wshape, kNCW, param_.layout.value());
wshape[0] *= param_.num_group;
SHAPE_ASSIGN_CHECK(*in_shape, conv::kWeight, wshape);
if (!param_.no_bias) {
SHAPE_ASSIGN_CHECK(*in_shape, conv::kBias, Shape1(param_.num_filter));
}
const index_t dilated_ksize_x = param_.DilatedKernelSize(0);
CHECK_EQ(dshape[1] % param_.num_group, 0U) \
<< "input num_filter must divide group size";
CHECK_EQ(param_.num_filter % param_.num_group, 0U) \
<< "output num_filter must divide group size";
CHECK_GT(param_.kernel.Size(), 0U) \
<< "incorrect kernel size: " << param_.kernel;
CHECK_GT(param_.stride.Size(), 0U) \
<< "incorrect stride size: " << param_.stride;
CHECK_GT(param_.dilate.Size(), 0U) \
<< "incorrect dilate size: " << param_.dilate;
Shape<3> oshape;
oshape[0] = dshape[0];
oshape[1] = param_.num_filter;
oshape[2] = dshape[2] ?
(AddPad(dshape[2], param_.pad[0]) - dilated_ksize_x) / param_.stride[0] + 1 : 0;
SHAPE_ASSIGN_CHECK(*out_shape, 0, ConvertLayout(oshape, kNCW, param_.layout.value()));
// Perform incomplete shape inference. Fill in the missing values in data shape.
// 1) We can always fill in the batch_size.
// 2) We can back-calculate the input height/width if the corresponding stride is 1.
oshape = ConvertLayout((*out_shape)[0].get<3>(), param_.layout.value(), kNCW);
dshape[0] = oshape[0];
if (oshape[2] && param_.stride[0] == 1) {
dshape[2] = oshape[2] + dilated_ksize_x - 1 - 2 * param_.pad[0];
}
SHAPE_ASSIGN_CHECK(*in_shape, conv::kData,
ConvertLayout(dshape, kNCW, param_.layout.value()));
// Check whether the kernel sizes are valid
if (dshape[2] != 0) {
CHECK_LE(dilated_ksize_x, AddPad(dshape[2], param_.pad[0])) << "kernel size exceed input";
}
return true;
} else if (param_.kernel.ndim() == 2) {
// 2d conv
CHECK_EQ(dshp.ndim(), 4U) \
<< "Input data should be 4D in batch-num_filter-y-x";
Shape<4> dshape = ConvertLayout(dshp.get<4>(), param_.layout.value(), kNCHW);
Shape<4> wshape = Shape4(param_.num_filter / param_.num_group,
dshape[1] / param_.num_group,
param_.kernel[0], param_.kernel[1]);
wshape = ConvertLayout(wshape, kNCHW, param_.layout.value());
wshape[0] *= param_.num_group;
SHAPE_ASSIGN_CHECK(*in_shape, conv::kWeight, wshape);
if (!param_.no_bias) {
SHAPE_ASSIGN_CHECK(*in_shape, conv::kBias, Shape1(param_.num_filter));
}
const index_t dilated_ksize_y = param_.DilatedKernelSize(0);
const index_t dilated_ksize_x = param_.DilatedKernelSize(1);
CHECK_EQ(dshape[1] % param_.num_group, 0U) \
<< "input num_filter must divide group size";
CHECK_EQ(param_.num_filter % param_.num_group, 0U) \
<< "output num_filter must divide group size";
CHECK_GT(param_.kernel.Size(), 0U) \
<< "incorrect kernel size: " << param_.kernel;
CHECK_GT(param_.stride.Size(), 0U) \
<< "incorrect stride size: " << param_.stride;
CHECK_GT(param_.dilate.Size(), 0U) \
<< "incorrect dilate size: " << param_.dilate;
Shape<4> oshape;
oshape[0] = dshape[0];
oshape[1] = param_.num_filter;
oshape[2] = dshape[2] ?
(AddPad(dshape[2], param_.pad[0]) - dilated_ksize_y) / param_.stride[0] + 1 : 0;
oshape[3] = dshape[3] ?
(AddPad(dshape[3], param_.pad[1]) - dilated_ksize_x) / param_.stride[1] + 1 : 0;
SHAPE_ASSIGN_CHECK(*out_shape, 0, ConvertLayout(oshape, kNCHW, param_.layout.value()));
// Perform incomplete shape inference. Fill in the missing values in data shape.
// 1) We can always fill in the batch_size.
// 2) We can back-calculate the input height/width if the corresponding stride is 1.
oshape = ConvertLayout((*out_shape)[0].get<4>(), param_.layout.value(), kNCHW);
dshape[0] = oshape[0];
if (oshape[2] && param_.stride[0] == 1) {
dshape[2] = oshape[2] + dilated_ksize_y - 1 - 2 * param_.pad[0];
}
if (oshape[3] && param_.stride[1] == 1) {
dshape[3] = oshape[3] + dilated_ksize_x - 1 - 2 * param_.pad[1];
}
SHAPE_ASSIGN_CHECK(*in_shape, conv::kData,
ConvertLayout(dshape, kNCHW, param_.layout.value()));
// Check whether the kernel sizes are valid
if (dshape[2] != 0) {
CHECK_LE(dilated_ksize_y, AddPad(dshape[2], param_.pad[0])) << "kernel size exceed input";
}
if (dshape[3] != 0) {
CHECK_LE(dilated_ksize_x, AddPad(dshape[3], param_.pad[1])) << "kernel size exceed input";
}
return true;
} else if (param_.kernel.ndim() == 3) {
// 3d conv
CHECK_EQ(dshp.ndim(), 5U) \
<< "Input data should be 5D in batch-num_filter-depth-y-x";
Shape<5> dshape = ConvertLayout(dshp.get<5>(), param_.layout.value(), kNCDHW);
Shape<5> wshape = Shape5(param_.num_filter / param_.num_group, dshape[1] / param_.num_group,
param_.kernel[0], param_.kernel[1], param_.kernel[2]);
wshape = ConvertLayout(wshape, kNCDHW, param_.layout.value());
wshape[0] *= param_.num_group;
SHAPE_ASSIGN_CHECK(*in_shape, conv::kWeight, wshape);
if (!param_.no_bias) {
SHAPE_ASSIGN_CHECK(*in_shape, conv::kBias, Shape1(param_.num_filter));
}
// Note: 3D dilation currently not supported.
// Calculations below done to preserve symmetry with 1D/2D code.
const index_t dilated_ksize_d = param_.DilatedKernelSize(0);
const index_t dilated_ksize_y = param_.DilatedKernelSize(1);
const index_t dilated_ksize_x = param_.DilatedKernelSize(2);
CHECK_EQ(dshape[1] % param_.num_group, 0U)
<< "input num_filter must divide group size";
CHECK_EQ(param_.num_filter % param_.num_group, 0U)
<< "output num_filter must divide group size";
CHECK_GT(param_.kernel.Size(), 0U) \
<< "incorrect kernel size: " << param_.kernel;
CHECK_GT(param_.stride.Size(), 0U) \
<< "incorrect stride size: " << param_.stride;
CHECK_GT(param_.dilate.Size(), 0U) \
<< "incorrect dilate size: " << param_.dilate;
CHECK_EQ(param_.dilate.Size(), 1U)
<< "Dilate is not supported in 3d convolution";
Shape<5> oshape;
oshape[0] = dshape[0];
oshape[1] = param_.num_filter;
oshape[2] = dshape[2] ?
(AddPad(dshape[2], param_.pad[0]) - dilated_ksize_d) / param_.stride[0] + 1 : 0;
oshape[3] = dshape[3] ?
(AddPad(dshape[3], param_.pad[1]) - dilated_ksize_y) / param_.stride[1] + 1 : 0;
oshape[4] = dshape[4] ?
(AddPad(dshape[4], param_.pad[2]) - dilated_ksize_x) / param_.stride[2] + 1 : 0;
SHAPE_ASSIGN_CHECK(*out_shape, 0, ConvertLayout(oshape, kNCDHW, param_.layout.value()));
// Perform incomplete shape inference. Fill in the missing values in data shape.
// 1) We can always fill in the batch_size.
// 2) We can back-calculate the input depth/height/width if the corresponding stride is 1.
oshape = ConvertLayout((*out_shape)[0].get<5>(), param_.layout.value(), kNCDHW);
dshape[0] = oshape[0];
if (oshape[2] && param_.stride[0] == 1) {
dshape[2] = oshape[2] + dilated_ksize_d - 1 - 2 * param_.pad[0];
}
if (oshape[3] && param_.stride[1] == 1) {
dshape[3] = oshape[3] + dilated_ksize_y - 1 - 2 * param_.pad[1];
}
if (oshape[4] && param_.stride[2] == 1) {
dshape[4] = oshape[4] + dilated_ksize_x - 1 - 2 * param_.pad[2];
}
SHAPE_ASSIGN_CHECK(*in_shape, conv::kData,
ConvertLayout(dshape, kNCDHW, param_.layout.value()));
// Check whether the kernel sizes are valid
if (dshape[2] != 0) {
CHECK_LE(dilated_ksize_d, AddPad(dshape[2], param_.pad[0])) << "kernel size exceed input";
}
if (dshape[3] != 0) {
CHECK_LE(dilated_ksize_y, AddPad(dshape[3], param_.pad[1])) << "kernel size exceed input";
}
if (dshape[4] != 0) {
CHECK_LE(dilated_ksize_x, AddPad(dshape[4], param_.pad[2])) << "kernel size exceed input";
}
return true;
} else {
LOG(FATAL) << "Unknown convolution type";
return false;
}
}