in example/ssd/tools/caffe_converter/convert_symbol.py [0:0]
def _parse_proto(prototxt_fname):
"""Parse Caffe prototxt into symbol string
"""
proto = caffe_parser.read_prototxt(prototxt_fname)
# process data layer
input_name, input_dim, layers = _get_input(proto)
# only support single input, so always use `data` as the input data
mapping = {input_name: 'data'}
need_flatten = {input_name: False}
symbol_string = "import mxnet as mx\ndata = mx.symbol.Variable(name='data')\n"
flatten_count = 0
output_name = ""
prev_name = None
# convert reset layers one by one
for i, layer in enumerate(layers):
type_string = ''
param_string = ''
skip_layer = False
bottom_order = []
name = re.sub('[-/]', '_', layer.name)
if layer.type == 'Convolution' or layer.type == 4:
type_string = 'mx.symbol.Convolution'
param_string = _convert_conv_param(layer.convolution_param)
need_flatten[name] = True
if layer.type == 'Deconvolution' or layer.type == 39:
type_string = 'mx.symbol.Deconvolution'
param_string = _convert_conv_param(layer.convolution_param)
need_flatten[name] = True
if layer.type == 'Pooling' or layer.type == 17:
type_string = 'mx.symbol.Pooling'
param_string = _convert_pooling_param(layer.pooling_param)
need_flatten[name] = True
if layer.type == 'ReLU' or layer.type == 18:
type_string = 'mx.symbol.Activation'
param_string = "act_type='relu'"
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
if layer.type == 'TanH' or layer.type == 23:
type_string = 'mx.symbol.Activation'
param_string = "act_type='tanh'"
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
if layer.type == 'Sigmoid' or layer.type == 19:
type_string = 'mx.symbol.Activation'
param_string = "act_type='sigmoid'"
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
if layer.type == 'LRN' or layer.type == 15:
type_string = 'mx.symbol.LRN'
param = layer.lrn_param
param_string = "alpha=%f, beta=%f, knorm=%f, nsize=%d" % (
param.alpha, param.beta, param.k, param.local_size)
need_flatten[name] = True
if layer.type == 'InnerProduct' or layer.type == 14:
type_string = 'mx.symbol.FullyConnected'
param = layer.inner_product_param
param_string = "num_hidden=%d, no_bias=%s" % (
param.num_output, not param.bias_term)
need_flatten[name] = False
if layer.type == 'Dropout' or layer.type == 6:
type_string = 'mx.symbol.Dropout'
param = layer.dropout_param
param_string = "p=%f" % param.dropout_ratio
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
if layer.type == 'Softmax' or layer.type == 20:
if layer.softmax_param.axis == 2:
symbol_string += "%s = mx.symbol.transpose(%s, axes=(0,2,1))\n" %\
(mapping[layer.bottom[0]], mapping[layer.bottom[0]])
type_string = 'mx.symbol.SoftmaxActivation'
param_string = "mode='channel'"
need_flatten[name] = False
else:
type_string = 'mx.symbol.SoftmaxOutput'
if layer.type == 'Flatten' or layer.type == 8:
if 'softmax' in layer.bottom[0]:
prev_name = re.sub('[-/]', '_', layers[i-1].name)
skip_layer = True
else:
type_string = 'mx.symbol.Flatten'
need_flatten[name] = False
if layer.type == 'Split' or layer.type == 22:
type_string = 'split' # will process later
if layer.type == 'Concat' or layer.type == 3:
type_string = 'mx.symbol.Concat'
need_flatten[name] = True
if layer.type == 'Crop':
type_string = 'mx.symbol.Crop'
need_flatten[name] = True
param_string = 'center_crop=True'
if layer.type == 'BatchNorm':
type_string = 'mx.symbol.BatchNorm'
param = layer.batch_norm_param
# CuDNN requires eps to be greater than 1e-05
# We compensate for this change in convert_model
epsilon = param.eps
if (epsilon <= 1e-05):
epsilon = 1e-04
# if next layer is scale, don't fix gamma
fix_gamma = layers[i+1].type != 'Scale'
param_string = 'use_global_stats=%s, fix_gamma=%s, eps=%f' % (
param.use_global_stats, fix_gamma, epsilon)
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
if layer.type == 'Scale':
assert layers[i-1].type == 'BatchNorm'
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
skip_layer = True
prev_name = re.sub('[-/]', '_', layers[i-1].name)
if layer.type == 'PReLU':
type_string = 'mx.symbol.LeakyReLU'
param = layer.prelu_param
param_string = "act_type='prelu', slope=%f" % param.filler.value
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
if layer.type == 'Eltwise':
type_string = 'mx.symbol.broadcast_add'
param_string = ""
need_flatten[name] = False
if layer.type == 'Reshape':
type_string = 'mx.symbol.Reshape'
param = layer.reshape_param
param_string = 'shape=(' + ','.join([str(x) for x in list(param.shape.dim)]) + ')'
need_flatten[name] = True
if layer.type == 'AbsVal':
type_string = 'mx.symbol.abs'
need_flatten[name] = need_flatten[mapping[layer.bottom[0]]]
if layer.type == 'Normalize':
bottom = re.sub('[-/]', '_', layer.bottom[0])
conv_layer = _find_layer(layers, bottom)
assert conv_layer is not None
param = layer.norm_param
assert not param.across_spatial and not param.channel_shared
assert param.scale_filler.type == 'constant'
if conv_layer.type == 'Convolution':
scale_name = "%s_scale" % name
symbol_string += "%s=mx.sym.Variable(name='%s', shape=(1, %d, 1, 1), init=mx.init.Constant(%f))\n" % \
(scale_name, scale_name, conv_layer.convolution_param.num_output,
param.scale_filler.value)
symbol_string += "%s=mx.symbol.L2Normalization(name='%s', data=%s, mode='channel')\n" %\
(name, name, mapping[layer.bottom[0]])
symbol_string += "%s=mx.symbol.broadcast_mul(lhs=%s, rhs=%s)\n" %\
(name, scale_name, name)
type_string = 'split'
need_flatten[name] = True
else:
raise ValueError('Unknown/Invalid normalize layer!')
if layer.type == 'Permute':
type_string = 'mx.symbol.transpose'
param_string = "axes=(%s)" % (','.join([str(x) for x in layer.permute_param.order]))
need_flatten[name] = True
from_name = ''
if layer.type == 'PriorBox':
param = layer.prior_box_param
if layer.bottom[0] == 'data':
bottom_order = [1]
else:
bottom_order = [0]
try:
import math
min_size = param.min_size[0] / input_dim[2]
max_size = math.sqrt(param.min_size[0] * param.max_size[0]) / input_dim[2]
sizes = '(%f, %f)' %(min_size, max_size)
except AttributeError:
min_size = param.min_size[0] / input_dim[2]
sizes = '(%f)' %(min_size)
ars = list(param.aspect_ratio)
ratios = [1.]
for ar in ars:
ratios.append(ar)
if param.flip:
ratios.append(1. / ar)
ratios_string = '(' + ','.join(str(x) for x in ratios) + ')'
clip = param.clip
if (param.step_h > 0 or param.step_w > 0):
step_h = param.step_h
step_w = param.step_w
elif param.step > 0:
step_h = param.step
step_w = param.step
else:
step_h = -1
step_w = -1
finput_dimh = float(input_dim[2])
finput_dimw = float(input_dim[3])
step = '(%f, %f)' % (step_h / finput_dimh, step_w / finput_dimw)
assert param.offset == 0.5, "currently only support offset = 0.5"
symbol_string += '%s = mx.contrib.symbol.MultiBoxPrior(%s, sizes=%s, ratios=%s, clip=%s, steps=%s, name="%s")\n' % \
(name, mapping[layer.bottom[0]], sizes, ratios_string, clip, step, name)
symbol_string += '%s = mx.symbol.Flatten(data=%s)\n' % (name, name)
type_string = 'split'
need_flatten[name] = False
if layer.type == 'DetectionOutput':
bottom_order = [1, 0, 2]
param = layer.detection_output_param
assert param.share_location == True
assert param.background_label_id == 0
nms_param = param.nms_param
type_string = 'mx.contrib.symbol.MultiBoxDetection'
param_string = "nms_threshold=%f, nms_topk=%d, clip=False" % \
(nms_param.nms_threshold, nms_param.top_k)
if skip_layer:
assert len(layer.bottom) == 1
symbol_string += "%s = %s\n" % (name, prev_name)
elif type_string == '':
raise ValueError('Unknown layer %s!' % layer.type)
elif type_string != 'split':
bottom = layer.bottom
if param_string != "":
param_string = ", " + param_string
if len(bottom) == 1:
# print(need_flatten)
if need_flatten[mapping[bottom[0]]] and type_string == 'mx.symbol.FullyConnected':
flatten_name = "flatten_%d" % flatten_count
symbol_string += "%s=mx.symbol.Flatten(name='%s', data=%s)\n" % (
flatten_name, flatten_name, mapping[bottom[0]])
flatten_count += 1
need_flatten[flatten_name] = False
bottom[0] = flatten_name
mapping[bottom[0]] = bottom[0]
symbol_string += "%s = %s(name='%s', data=%s %s)\n" % (
name, type_string, name, mapping[bottom[0]], param_string)
else:
if not bottom_order:
bottom_order = range(len(bottom))
symbol_string += "%s = %s(name='%s', *[%s] %s)\n" % \
(name, type_string, name, ','.join([mapping[bottom[x]] for x in bottom_order]), param_string)
if layer.type == 'Concat' and layer.concat_param.axis == 2:
symbol_string += "%s = mx.symbol.Reshape(data=%s, shape=(0, -1, 4), name='%s')\n" %\
(name, name, name)
for j in range(len(layer.top)):
mapping[layer.top[j]] = name
output_name = name
return symbol_string, output_name, input_dim