relogic/pretrainkit/multitask_trainer.py [572:716]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def _log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
        if self.epoch is not None:
            logs["epoch"] = self.epoch
        if self.global_step is None:
            # when logging evaluation metrics without training
            self.global_step = 0
        if self.tb_writer:
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self.tb_writer.add_scalar(k, v, self.global_step)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        '"%s" of type %s for key "%s" as a scalar. '
                        "This invocation of Tensorboard's writer.add_scalar() "
                        "is incorrect so we dropped this attribute.",
                        v,
                        type(v),
                        k,
                    )
            self.tb_writer.flush()
        if is_wandb_available():
            if self.is_world_master():
                wandb.log(logs, step=self.global_step)
        output = {**logs, **{"step": self.global_step}}
        if iterator is not None:
            iterator.write(output)
        else:
            logger.info(output)

    def _training_step(
        self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], optimizer: torch.optim.Optimizer
    ) -> float:
        model.train()
        for k, v in inputs.items():
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(self.args.device)

        outputs = model(**inputs)
        loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

        if self.args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        return loss.item()

    def is_local_master(self) -> bool:
        if is_torch_tpu_available():
            return xm.is_master_ordinal(local=True)
        else:
            return self.args.local_rank in [-1, 0]

    def is_world_master(self) -> bool:
        """
        This will be True only in one process, even in distributed mode,
        even when training on multiple machines.
        """
        if is_torch_tpu_available():
            return xm.is_master_ordinal(local=False)
        else:
            return self.args.local_rank == -1 or torch.distributed.get_rank() == 0

    def save_model(self, output_dir: Optional[str] = None):
        """
        Saving best-practices: if you use default names for the model,
        you can reload it using from_pretrained().

        Will only save from the world_master process (unless in TPUs).
        """

        if is_torch_tpu_available():
            self._save_tpu(output_dir)
        elif self.is_world_master():
            self._save(output_dir)

    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        logger.info("Saving model checkpoint to %s", output_dir)

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")

        xm.rendezvous("saving_checkpoint")
        self.model.save_pretrained(output_dir)

    def _save(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info("Saving model checkpoint to %s", output_dir)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        # if not isinstance(self.model, PreTrainedModel):
        #     raise ValueError("Trainer.model appears to not be a PreTrainedModel")
        self.model.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

    def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
        ordering_and_checkpoint_path = []

        glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
                if regex_match and regex_match.groups():
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
        return checkpoints_sorted

    def _rotate_checkpoints(self, use_mtime=False) -> None:
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
            return

        # Check if we should delete older checkpoint(s)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
            shutil.rmtree(checkpoint)

    def evaluate(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



relogic/pretrainkit/trainer.py [551:695]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def _log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
        if self.epoch is not None:
            logs["epoch"] = self.epoch
        if self.global_step is None:
            # when logging evaluation metrics without training
            self.global_step = 0
        if self.tb_writer:
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self.tb_writer.add_scalar(k, v, self.global_step)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        '"%s" of type %s for key "%s" as a scalar. '
                        "This invocation of Tensorboard's writer.add_scalar() "
                        "is incorrect so we dropped this attribute.",
                        v,
                        type(v),
                        k,
                    )
            self.tb_writer.flush()
        if is_wandb_available():
            if self.is_world_master():
                wandb.log(logs, step=self.global_step)
        output = {**logs, **{"step": self.global_step}}
        if iterator is not None:
            iterator.write(output)
        else:
            logger.info(output)

    def _training_step(
        self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], optimizer: torch.optim.Optimizer
    ) -> float:
        model.train()
        for k, v in inputs.items():
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(self.args.device)

        outputs = model(**inputs)
        loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

        if self.args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        return loss.item()

    def is_local_master(self) -> bool:
        if is_torch_tpu_available():
            return xm.is_master_ordinal(local=True)
        else:
            return self.args.local_rank in [-1, 0]

    def is_world_master(self) -> bool:
        """
        This will be True only in one process, even in distributed mode,
        even when training on multiple machines.
        """
        if is_torch_tpu_available():
            return xm.is_master_ordinal(local=False)
        else:
            return self.args.local_rank == -1 or torch.distributed.get_rank() == 0

    def save_model(self, output_dir: Optional[str] = None):
        """
        Saving best-practices: if you use default names for the model,
        you can reload it using from_pretrained().

        Will only save from the world_master process (unless in TPUs).
        """

        if is_torch_tpu_available():
            self._save_tpu(output_dir)
        elif self.is_world_master():
            self._save(output_dir)

    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        logger.info("Saving model checkpoint to %s", output_dir)

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")

        xm.rendezvous("saving_checkpoint")
        self.model.save_pretrained(output_dir)

    def _save(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info("Saving model checkpoint to %s", output_dir)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        # if not isinstance(self.model, PreTrainedModel):
        #     raise ValueError("Trainer.model appears to not be a PreTrainedModel")
        self.model.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

    def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
        ordering_and_checkpoint_path = []

        glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
                if regex_match and regex_match.groups():
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
        return checkpoints_sorted

    def _rotate_checkpoints(self, use_mtime=False) -> None:
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
            return

        # Check if we should delete older checkpoint(s)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
            shutil.rmtree(checkpoint)

    def evaluate(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



