def train()

in relogic/pretrainkit/multitask_trainer.py [0:0]


    def train(self, model_path: Optional[str] = None):
        """
        Main training entry point.

        Args:
            model_path:
                (Optional) Local path to model if model to train has been instantiated from a local path
                If present, we will try reloading the optimizer/scheduler states from there.
        """
        train_dataloaders = self.get_train_dataloaders()
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = (
                self.args.max_steps // (sum([len(train_dataloader) for train_dataloader in train_dataloaders]) // self.args.gradient_accumulation_steps) + 1
            )
        else:
            t_total = int(sum([len(train_dataloader) for train_dataloader in train_dataloaders]) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs

        optimizer, scheduler = self.get_optimizers(num_training_steps=t_total)

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
            optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
            scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, optimizer = amp.initialize(model, optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})

        # Train!
        if is_torch_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = [
                train_batch_size
                * self.args.gradient_accumulation_steps
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
            for train_batch_size in self.args.train_batch_sizes]
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", self.num_examples(train_dataloaders))
        logger.info("  Num Epochs = %d", num_train_epochs)
        logger.info("  Instantaneous batch size per device = %s", str(self.args.per_device_train_batch_sizes))
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %s", str(total_train_batch_size))
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        self.global_step = 0
        self.epoch = 0
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
                self.global_step = int(model_path.split("-")[-1].split("/")[0])
                epochs_trained = self.global_step // (sum([len(train_dataloader) for train_dataloader in train_dataloaders]) // self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
                    sum([len(train_dataloader) for train_dataloader in train_dataloaders]) // self.args.gradient_accumulation_steps
                )

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
                logger.info("  Continuing training from global step %d", self.global_step)
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
                self.global_step = 0
                logger.info("  Starting fine-tuning.")

        tr_loss = 0.0
        logging_loss = 0.0
        model.zero_grad()
        train_iterator = trange(
            epochs_trained, int(num_train_epochs), desc="Epoch", disable=not self.is_local_master() or not self.args.logging_tqdm
        )

        for epoch in train_iterator:
            for train_dataloader in train_dataloaders:
                if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                    train_dataloader.sampler.set_epoch(epoch)

            if is_torch_tpu_available():
                parallel_loaders = [pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                ) for train_dataloader in train_dataloaders]
                epoch_iterators = parallel_loaders
            else:
                epoch_iterators = train_dataloaders

            epoch_iterator_length = sum([len(epoch_iterator) for epoch_iterator in epoch_iterators])

            for step, inputs in enumerate(self.get_training_mb(epoch_iterators, epoch)):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

                tr_loss += self._training_step(model, inputs, optimizer)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    epoch_iterator_length <= self.args.gradient_accumulation_steps
                    and (step + 1) == epoch_iterator_length
                ):
                    if self.args.fp16:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

                    if is_torch_tpu_available():
                        xm.optimizer_step(optimizer)
                    else:
                        optimizer.step()

                    scheduler.step()
                    model.zero_grad()
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / epoch_iterator_length

                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        logs["loss"] = (tr_loss - logging_loss) / self.args.logging_steps
                        # backward compatibility for pytorch schedulers
                        learning_rates = scheduler.get_last_lr() if version.parse(torch.__version__) >= version.parse("1.4") else scheduler.get_lr()[0]
                        for group_idx, learning_rate in enumerate(learning_rates):
                            logs["learning_rate_{}".format(group_idx)] = learning_rate
                        logging_loss = tr_loss

                        self._log(logs)

                    if (self.args.eval_steps > 0 and self.global_step % self.args.eval_steps == 0):
                        if self.args.evaluate_during_training:
                            self.evaluate()

                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert model.module is self.model
                        else:
                            assert model is self.model
                        # Save model checkpoint
                        output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")

                        self.save_model(output_dir)

                        if self.is_world_master():
                            self._rotate_checkpoints()

                        if is_torch_tpu_available():
                            xm.rendezvous("saving_optimizer_states")
                            xm.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_master():
                            torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

                if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                    for epoch_iterator in epoch_iterators:
                        epoch_iterator.close()
                    break
            if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                train_iterator.close()
                break
            if self.args.tpu_metrics_debug:
                # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                xm.master_print(met.metrics_report())

        if self.tb_writer:
            self.tb_writer.close()

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        return TrainOutput(self.global_step, tr_loss / self.global_step, None)