Summary: 125 instances, 106 unique Text Count input_size=1, # TODO fix 1 # TODO hyperparameter override for hyper parameter optimization 1 # TODO: is this the right way to do things? 1 # TODO: shouldn't we sum and divide by the number of observed values 1 # FIXME: mx.gluon.SymbolBlock cannot infer float_type and uses default np.float32 1 # TODO: add support for kernel size=1 1 # TODO: add temporal attention option 1 # FIXME: validate list elements 2 # TODO: remove 1 # TODO: cover the multivariate case here too 1 # TODO: Fix for missing values 2 # TODO check if anything can be optimized here 1 # TODO: update to mxnet cumsum when it supports axis=-1 2 # TODO: computations on knot spacings could be avoided here 1 # TODO: crps 1 # TODO: should have a "nanmean" here 1 # TODO: think about maybe only using past_ts_data[- max(5*season_length, 2*prediction_length):] for speedup 1 elif offset.name == "B": # TODO: check this case 1 # TODO: implement custom data serializer and deserializer: convert between gluonts dataset and bytes 1 # r: growth rate shape (num_ts, ) TODO: Learn 1 # TODO add support for HPO 1 # TODO filter out time series with target shorter than prediction length 2 # TODO: support parameters 1 # TODO: on windows, operators below may produce NaN values 1 # k: carrying capacity shape (num_ts, ) TODO: Learn 1 # FIXME: we persist input/output formats of hybrid blocks as mxnet does not 1 # TODO: Allow the local model to be defined as an arbitrary local model, e.g. DF-GP and DF-LDS 1 kvstore="device", # FIXME: initialize properly 1 # TODO optimize 2 # TODO Add parameter allowing for rolling of other arrays 1 # TODO: find out whether this is a duplicate 1 ), # TODO: pass the actual observed here 1 # FIXME: also needs to serialize the output_transform 2 # TODO validation of prediction_length and freq could also 1 # TODO: add support for static input at some point 1 # TODO: GRUCell activation is fixed to tanh 1 # TODO: find a fast way to assert absence of nans. 1 # TODO: Do we really need this check? 1 ) -> None: # TODO: we may want to return some training information here 1 # TODO be bubbled-up here from subclasses classes 1 # TODO: Define scaling for the frequency 1 != "ignore" # TODO: Figure out how to include 'auto' with no feat_static_cat in this check 1 TODO: This could be converted to a RecipeDataset to avoid code duplication. 2 # FIXME: https://github.com/apache/incubator-mxnet/issues/17488 3 # TODO: implement model_fn, input_fn, predict_fn, and output_fn !! 1 # TODO: segment script for readability 1 # TODO: This assumes that future_feat_dynamic has no missing values 1 # FIXME number 2 1 # FIXME number 1 1 # TODO: use event_shape 1 # TODO: 2 # TODO: not used 1 # TODO: handle conversion from image name to params, once default 1 # TODO: when we have upgraded this will give notebook progress bars 1 # TODO: Metadata and pass it instead of freq. 1 # TODO: Based on form of the prior decide to do either filtering 1 # TODO: the following are for backward compatibility 1 # TODO 1 pass inputs in proj args 1 # TODO: holidays is type List[datetime.date] 2 # TODO this is temporary, we should make the callable object serializable in the first place 1 # TODO: handle error 1 # TODO: Implement it for the general case: `rank` > 0 1 # TODO: fix handling of static features 1 # TODO: reorganize modules to avoid circular dependency 2 # TODO or fix the evaluator so it supports missing values instead (all 2 # TODO implement local mode support 1 # TODO: error checking 1 # TODO: fix mutable arguments 1 ) # TODO: handle possible exception 1 # FIXME: https://github.com/apache/incubator-mxnet/issues/11849 1 # TODO 2 concatenate inputs features to x, better names would be great 1 # TODO: optimize what we pass to the decoder for the prediction case, 1 # TODO: DONT FORGET TO PARSE ANY ADDITIONAL ARGUMENTS YOU SPECIFIED, FOR EXAMPLE THE INPUTS 1 # TODO implement proper logic handling images when none are provided by user 1 # TODO: eventually change for 1 # TODO: information about required features. 1 # TODO: Add support for symbolic case: Cannot use < operator with symbolic variables 1 # TODO does it make sense to have this then? 1 # TODO: in the extension? 1 # TODO the test set may be gone otherwise with such a filtering) 2 # TODO: here? 1 # TODO: add support for static variables at some point 1 # TODO: think about using shared context NDArrays 1 # TODO make timeout configurable 1 # TODO: Consider using shared memory for the data transfer. 1 # TODO param disable_default_callbacks to get backwards compatibility 1 # TODO: and substitute Any with Dataset 2 # TODO: WRITE YOUR CUSTOM CODE HERE 1 # TODO: given that we only support json, should we also filter json 1 # TODO: handle case with all components of the same type more efficiently when sampling 1 # TODO: In addition to passing freq, the descriptor should be carry 1 F.ones_like(past_target), # TODO: pass the actual observed here 2 ), # TODO: use load 2 # TODO: Output the scale as well to be used by the decoder 1 # TODO: create a FormatDescriptor object that can be derived from a 1 # FIXME: try to retrieve input/output format 1 # TODO: Add support for symbolic case: Cannot use <= operator with symbolic variables 1 # TODO the following is done for backwards compatibility. For future 1 # ), # TODO: use load 2 # TODO clean up 2 # TODO: is the following restriction needed? 1 except Exception: # TODO: this looks weird 1 # FIXME: prevents mxnet from failing with empty saved parameters list 1 # TODO: there used to be "nansum" here, to be fully equivalent we 1 # TODO: when mxnet has searchsorted replace this 1 # TODO switch to click 1