src/gluonts/mx/util.py (8 lines): - line 210: # FIXME: we persist input/output formats of hybrid blocks as mxnet does not - line 211: # FIXME: https://github.com/apache/incubator-mxnet/issues/17488 - line 247: # FIXME: prevents mxnet from failing with empty saved parameters list - line 248: # FIXME: https://github.com/apache/incubator-mxnet/issues/17488 - line 255: # FIXME: mx.gluon.SymbolBlock cannot infer float_type and uses default np.float32 - line 256: # FIXME: https://github.com/apache/incubator-mxnet/issues/11849 - line 264: # FIXME: try to retrieve input/output format - line 265: # FIXME: https://github.com/apache/incubator-mxnet/issues/17488 src/gluonts/dataset/common.py (8 lines): - line 216: # TODO: given that we only support json, should we also filter json - line 217: # TODO: in the extension? - line 271: # TODO: find out whether this is a duplicate - line 367: # TODO: find a fast way to assert absence of nans. - line 401: # TODO: create a FormatDescriptor object that can be derived from a - line 402: # TODO: Metadata and pass it instead of freq. - line 403: # TODO: In addition to passing freq, the descriptor should be carry - line 404: # TODO: information about required features. src/gluonts/evaluation/backtest.py (6 lines): - line 97: # TODO filter out time series with target shorter than prediction length - line 98: # TODO or fix the evaluator so it supports missing values instead (all - line 99: # TODO the test set may be gone otherwise with such a filtering) - line 187: # TODO does it make sense to have this then? - line 211: ), # TODO: use load - line 214: ), # TODO: use load src/gluonts/nursery/autogluon_tabular/predictor.py (6 lines): - line 72: # TODO check if anything can be optimized here - line 211: # TODO clean up - line 212: # TODO optimize - line 262: # TODO clean up - line 263: # TODO optimize - line 385: # TODO this is temporary, we should make the callable object serializable in the first place src/gluonts/nursery/SCott/pts/evaluation/backtest.py (5 lines): - line 89: # TODO filter out time series with target shorter than prediction length - line 90: # TODO or fix the evaluator so it supports missing values instead (all - line 91: # TODO the test set may be gone otherwise with such a filtering) - line 217: # ), # TODO: use load - line 220: # ), # TODO: use load src/gluonts/mx/trainer/_base.py (5 lines): - line 152: # TODO param disable_default_callbacks to get backwards compatibility - line 210: # TODO the following is done for backwards compatibility. For future - line 240: ) -> None: # TODO: we may want to return some training information here - line 293: kvstore="device", # FIXME: initialize properly - line 474: ) # TODO: handle possible exception src/gluonts/mx/distribution/isqf.py (4 lines): - line 220: # TODO: update to mxnet cumsum when it supports axis=-1 - line 901: # TODO: update to mxnet cumsum when it supports axis=-1 - line 951: # FIXME number 1 - line 968: # FIXME number 2 src/gluonts/model/seq2seq/_seq2seq_network.py (4 lines): - line 146: # TODO: there used to be "nansum" here, to be fully equivalent we - line 147: # TODO: should have a "nanmean" here - line 148: # TODO: shouldn't we sum and divide by the number of observed values - line 149: # TODO: here? src/gluonts/nursery/sagemaker_sdk/estimator.py (4 lines): - line 197: # TODO add support for HPO - line 417: # TODO: handle conversion from image name to params, once default - line 428: # TODO implement local mode support - line 510: # TODO hyperparameter override for hyper parameter optimization src/gluonts/mx/linalg_util.py (3 lines): - line 187: # TODO: Add support for symbolic case: Cannot use < operator with symbolic variables - line 206: # TODO: Add support for symbolic case: Cannot use <= operator with symbolic variables - line 209: except Exception: # TODO: this looks weird src/gluonts/nursery/sagemaker_sdk/entry_point_scripts/train_entry_point.py (3 lines): - line 33: # TODO: implement model_fn, input_fn, predict_fn, and output_fn !! - line 34: # TODO: segment script for readability - line 92: # TODO switch to click src/gluonts/model/seq2seq/_forking_network.py (3 lines): - line 176: # TODO: This assumes that future_feat_dynamic has no missing values - line 177: # TODO: Output the scale as well to be used by the decoder - line 195: # TODO: optimize what we pass to the decoder for the prediction case, src/gluonts/nursery/SCott/pts/dataset/artificial.py (2 lines): - line 367: TODO: This could be converted to a RecipeDataset to avoid code duplication. - line 875: # TODO: Fix for missing values src/gluonts/mx/block/decoder.py (2 lines): - line 52: # TODO: add support for static variables at some point - line 105: # TODO: add support for static input at some point src/gluonts/time_feature/_base.py (2 lines): - line 128: # TODO: - line 143: # TODO: src/gluonts/mx/distribution/piecewise_linear.py (2 lines): - line 446: # TODO: computations on knot spacings could be avoided here - line 463: # TODO: use event_shape src/gluonts/nursery/sagemaker_sdk/entry_point_scripts/run_entry_point.py (2 lines): - line 31: # TODO: WRITE YOUR CUSTOM CODE HERE - line 57: # TODO: DONT FORGET TO PARSE ANY ADDITIONAL ARGUMENTS YOU SPECIFIED, FOR EXAMPLE THE INPUTS src/gluonts/model/estimator.py (2 lines): - line 37: # TODO validation of prediction_length and freq could also - line 38: # TODO be bubbled-up here from subclasses classes src/gluonts/dataset/loader.py (2 lines): - line 121: # TODO make timeout configurable - line 130: # TODO: the following are for backward compatibility src/gluonts/model/lstnet/_network.py (2 lines): - line 112: # TODO: add temporal attention option - line 126: # TODO: GRUCell activation is fixed to tanh src/gluonts/mx/distribution/transformed_distribution.py (2 lines): - line 228: # TODO: cover the multivariate case here too - line 235: # TODO: crps src/gluonts/dataset/stat.py (2 lines): - line 139: # TODO: reorganize modules to avoid circular dependency - line 140: # TODO: and substitute Any with Dataset src/gluonts/model/canonical/_network.py (2 lines): - line 101: F.ones_like(past_target), # TODO: pass the actual observed here - line 157: F.ones_like(past_target), # TODO: pass the actual observed here src/gluonts/nursery/auto_ode/auto_ode.py (2 lines): - line 76: # r: growth rate shape (num_ts, ) TODO: Learn - line 77: # k: carrying capacity shape (num_ts, ) TODO: Learn src/gluonts/nursery/SCott/pts/dataset/stat.py (2 lines): - line 134: # TODO: reorganize modules to avoid circular dependency - line 135: # TODO: and substitute Any with Dataset src/gluonts/nursery/sagemaker_sdk/model.py (2 lines): - line 55: # TODO: implement custom data serializer and deserializer: convert between gluonts dataset and bytes - line 162: # TODO implement proper logic handling images when none are provided by user src/gluonts/torch/model/deepar/module.py (1 line): - line 75: input_size=1, # TODO fix src/gluonts/model/forecast.py (1 line): - line 626: # FIXME: validate list elements src/gluonts/mx/kernels/_periodic_kernel.py (1 line): - line 138: # TODO: Define scaling for the frequency src/gluonts/nursery/SCott/pts/model/forecast.py (1 line): - line 37: # FIXME: validate list elements src/gluonts/mx/distribution/binned.py (1 line): - line 155: # TODO: when mxnet has searchsorted replace this src/gluonts/dataset/artificial/ar_p.py (1 line): - line 26: # TODO: support parameters src/gluonts/mx/batchify.py (1 line): - line 75: # TODO: think about using shared context NDArrays src/gluonts/mx/distribution/lowrank_gp.py (1 line): - line 84: # TODO 2 concatenate inputs features to x, better names would be great src/gluonts/model/naive_2/_predictor.py (1 line): - line 83: # TODO: think about maybe only using past_ts_data[- max(5*season_length, 2*prediction_length):] for speedup src/gluonts/nursery/spliced_binned_pareto/training_functions.py (1 line): - line 183: # TODO: handle error src/gluonts/core/serde/__init__.py (1 line): - line 77: # TODO: remove src/gluonts/mx/distribution/lds.py (1 line): - line 229: # TODO: Based on form of the prior decide to do either filtering src/gluonts/model/tpp/forecast.py (1 line): - line 61: # TODO: not used src/gluonts/model/predictor.py (1 line): - line 285: # TODO: Consider using shared memory for the data transfer. src/gluonts/dataset/artificial/generate_synthetic.py (1 line): - line 99: # TODO: Fix for missing values src/gluonts/model/deepstate/issm.py (1 line): - line 310: elif offset.name == "B": # TODO: check this case src/gluonts/model/deepar/_network.py (1 line): - line 94: # TODO: is the following restriction needed? src/gluonts/model/canonical/_estimator.py (1 line): - line 71: # TODO: error checking src/gluonts/model/deep_factor/_estimator.py (1 line): - line 159: # TODO: Allow the local model to be defined as an arbitrary local model, e.g. DF-GP and DF-LDS src/gluonts/mx/distribution/bijection.py (1 line): - line 198: # TODO: eventually change for src/gluonts/dataset/artificial/_base.py (1 line): - line 369: TODO: This could be converted to a RecipeDataset to avoid code duplication. src/gluonts/model/seq2seq/_mq_dnn_estimator.py (1 line): - line 163: # TODO: add support for kernel size=1 src/gluonts/model/gpvar/_network.py (1 line): - line 187: # TODO 1 pass inputs in proj args src/gluonts/model/seq2seq/_seq2seq_estimator.py (1 line): - line 261: # TODO: fix mutable arguments src/gluonts/gluonts_tqdm.py (1 line): - line 21: # TODO: when we have upgraded this will give notebook progress bars src/gluonts/dataset/artificial/recipe.py (1 line): - line 588: # TODO: holidays is type List[datetime.date] src/gluonts/mx/distribution/mixture.py (1 line): - line 61: # TODO: handle case with all components of the same type more efficiently when sampling src/gluonts/dataset/rolling_dataset.py (1 line): - line 116: # TODO Add parameter allowing for rolling of other arrays src/gluonts/nursery/SCott/pts/dataset/recipe.py (1 line): - line 237: # TODO: holidays is type List[datetime.date] src/gluonts/mx/model/predictor.py (1 line): - line 203: # FIXME: also needs to serialize the output_transform src/gluonts/mx/distribution/lowrank_multivariate_gaussian.py (1 line): - line 334: # TODO: Implement it for the general case: `rank` > 0 src/gluonts/model/rotbaum/_predictor.py (1 line): - line 156: != "ignore" # TODO: Figure out how to include 'auto' with no feat_static_cat in this check src/gluonts/nursery/SCott/pts/model/simple_feedforward/simple_feedforward_network.py (1 line): - line 92: ), # TODO: pass the actual observed here src/gluonts/mx/block/encoder.py (1 line): - line 111: # TODO: fix handling of static features src/gluonts/model/renewal/_network.py (1 line): - line 213: # TODO: on windows, operators below may produce NaN values src/gluonts/shell/sagemaker/params.py (1 line): - line 34: # TODO: is this the right way to do things? src/gluonts/_version.py (1 line): - line 174: # TODO: Do we really need this check? src/gluonts/torch/model/predictor.py (1 line): - line 117: # FIXME: also needs to serialize the output_transform