def create_transformation()

in src/gluonts/nursery/SCott/pts/model/transformer/transformer_estimator.py [0:0]


    def create_transformation(self) -> Transformation:
        remove_field_names = [
            FieldName.FEAT_DYNAMIC_CAT,
        ]
        if not self.use_feat_dynamic_real:
            remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)
        if not self.use_feat_static_real:
            remove_field_names.append(FieldName.FEAT_STATIC_REAL)
        return Chain(
            [RemoveFields(field_names=remove_field_names)]
            + (
                [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0])]
                if not self.use_feat_static_cat
                else []
            )
            + (
                [
                    SetField(
                        output_field=FieldName.FEAT_STATIC_REAL, value=[0.0]
                    )
                ]
                if not self.use_feat_static_real
                else []
            )
            + [
                AsNumpyArray(
                    field=FieldName.FEAT_STATIC_CAT,
                    expected_ndim=1,
                    dtype=np.long,
                ),
                AsNumpyArray(
                    field=FieldName.FEAT_STATIC_REAL,
                    expected_ndim=1,
                    dtype=self.dtype,
                ),
                AsNumpyArray(
                    field=FieldName.TARGET,
                    # in the following line, we add 1 for the time dimension
                    expected_ndim=1 + len(self.distr_output.event_shape),
                ),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=self.time_features,
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,
                    pred_length=self.prediction_length,
                    log_scale=True,
                ),
                VstackFeatures(
                    output_field=FieldName.FEAT_TIME,
                    input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                    + (
                        [FieldName.FEAT_DYNAMIC_REAL]
                        if self.use_feat_dynamic_real
                        else []
                    ),
                ),
                InstanceSplitter(
                    target_field=FieldName.TARGET,
                    is_pad_field=FieldName.IS_PAD,
                    start_field=FieldName.START,
                    forecast_start_field=FieldName.FORECAST_START,
                    train_sampler=ExpectedNumInstanceSampler(num_instances=1),
                    past_length=self.history_length,
                    future_length=self.prediction_length,
                    time_series_fields=[
                        FieldName.FEAT_TIME,
                        FieldName.OBSERVED_VALUES,
                    ],
                ),
            ]
        )