awslabs / keras-apache-mxnet
Duplication

Places in code with 6 or more lines that are exactly the same.

Intro
  • For duplication, we look at places in code where there are 6 or more lines of code that are exactly the same.
  • Before duplication is calculated, the code is cleaned to remove empty lines, comments, and frequently duplicated constructs such as imports.
  • You should aim at having as little as possible (<5%) of duplicated code as high-level of duplication can lead to maintenance difficulties, poor factoring, and logical contradictions.
Learn more...
Duplication Overall
  • 18% duplication:
    • 24,308 cleaned lines of cleaned code (without empty lines, comments, and frequently duplicated constructs such as imports)
    • 4,535 duplicated lines
  • 533 duplicates
system18% (4,535 lines)
Duplication per Extension
py18% (4,413 lines)
yml91% (122 lines)
Duplication per Component (primary)
keras/layers37% (2,200 lines)
keras/backend13% (1,117 lines)
keras/engine9% (417 lines)
keras/legacy26% (266 lines)
keras12% (234 lines)
keras_mxnet_ci91% (122 lines)
benchmark/scripts11% (94 lines)
keras/datasets20% (40 lines)
keras/utils2% (27 lines)
keras/preprocessing9% (18 lines)
ROOT0% (0 lines)
keras/wrappers0% (0 lines)
keras/applications0% (0 lines)
benchmark0% (0 lines)
benchmark/sparse0% (0 lines)

Duplication Between Components (50+ lines)

G keras/layers keras/layers keras/legacy keras/legacy keras/layers--keras/legacy 281 keras/engine keras/engine keras keras keras/engine--keras 50

Download: SVG DOT (open online Graphviz editor)

Open 3D force graph...

Show more details on duplication between components...
Longest Duplicates
The list of 20 longest duplicates.
See data for all 533 duplicates...
Size#FoldersFilesLinesCode
45 x 2 keras/layers
keras/layers
convolutional_recurrent.py
recurrent.py
994:1052 (6%)
2211:2269 (3%)
view
38 x 2 keras/engine
keras/engine
training_generator.py
training_generator.py
290:330 (9%)
395:435 (9%)
view
36 x 2 keras/layers
keras/layers
recurrent.py
recurrent.py
1093:1139 (2%)
1674:1720 (2%)
view
29 x 2 keras/backend
keras/backend
theano_backend.py
theano_backend.py
2228:2258 (1%)
2285:2315 (1%)
view
27 x 2 keras/layers
keras/layers
recurrent.py
recurrent.py
1690:1724 (1%)
2239:2273 (1%)
view
26 x 2 keras/layers
keras/legacy
recurrent.py
layers.py
596:623 (1%)
553:580 (5%)
view
26 x 2 keras/layers
keras/layers
convolutional.py
convolutional.py
793:820 (2%)
1069:1095 (2%)
view
25 x 2 keras/layers
keras/layers
convolutional_recurrent.py
recurrent.py
1022:1054 (3%)
1109:1141 (1%)
view
25 x 2 keras/layers
keras/layers
recurrent.py
recurrent.py
1658:1690 (1%)
2203:2235 (1%)
view
25 x 2 keras_mxnet_ci
keras_mxnet_ci
nightly-buildspec-python3.yml
pr-buildspec-python3.yml
11:36 (73%)
13:38 (69%)
view
24 x 2 benchmark/scripts/models
benchmark/scripts/models
lstm_synthetic.py
lstm_text_generation.py
67:98 (35%)
91:122 (20%)
view
24 x 2 keras/layers
keras/layers
recurrent.py
recurrent.py
1109:1139 (1%)
2239:2269 (1%)
view
24 x 2 keras/layers
keras/layers
convolutional_recurrent.py
recurrent.py
1022:1052 (3%)
1690:1720 (1%)
view
22 x 2 keras/layers
keras/layers
convolutional_recurrent.py
convolutional_recurrent.py
755:776 (3%)
1054:1075 (3%)
view
20 x 2 keras/layers
keras/layers
convolutional.py
convolutional.py
1546:1565 (1%)
1687:1706 (1%)
view
20 x 2 keras/backend
keras/backend
tensorflow_backend.py
theano_backend.py
4356:4430 (1%)
2799:2824 (1%)
view
19 x 2 keras/layers
keras/layers
convolutional_recurrent.py
recurrent.py
994:1018 (2%)
1666:1690 (1%)
view
18 x 2 keras/layers
keras/legacy
recurrent.py
layers.py
678:696 (1%)
607:625 (4%)
view
18 x 2 keras/layers
keras/layers
recurrent.py
recurrent.py
1144:1161 (1%)
1735:1752 (1%)
view
17 x 2 keras/layers
keras/layers
convolutional_recurrent.py
recurrent.py
1061:1077 (2%)
2277:2293 (1%)
view
Duplicated Units
The list of top 6 duplicated units.
See data for all 6 unit duplicates...
Size#FoldersFilesLinesCode
14 x 2 keras/backend
keras/backend
mxnet_backend.py
mxnet_backend.py
0:0 
0:0 
view
8 x 2 keras/legacy
keras/layers
layers.py
recurrent.py
0:0 
0:0 
view
8 x 2 keras/backend
keras/backend
mxnet_backend.py
mxnet_backend.py
0:0 
0:0 
view
6 x 2 keras/layers
keras/layers
pooling.py
pooling.py
0:0 
0:0 
view
38 x 2 keras/backend
keras/backend
tensorflow_backend.py
theano_backend.py
0:0 
0:0 
view
14 x 2 keras/backend
keras/backend
mxnet_backend.py
tensorflow_backend.py
0:0 
0:0 
view