src/mlm/scorers.py [304:313]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            sent_count += batch_size
            if (batch_id+1) % batch_log_interval == 0:
                logging.info("{} sents of {}, batch {} of {}".format(sent_count, len(dataset), batch_id+1, len(batch_sampler)))

        # Accumulate the counts
        for ctx_idx in range(len(self._ctxs)):
            bin_counts += bin_counts_per_ctx[ctx_idx].asnumpy()
            bin_sums += bin_sums_per_ctx[ctx_idx].asnumpy()

        return bin_counts, bin_sums
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/mlm/scorers.py [861:870]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            sent_count += batch_size
            if (batch_id+1) % batch_log_interval == 0:
                logging.info("{} sents of {}, batch {} of {}".format(sent_count, len(dataset), batch_id+1, len(batch_sampler)))

        # Accumulate the counts
        for ctx_idx in range(len(self._ctxs)):
            bin_counts += bin_counts_per_ctx[ctx_idx].asnumpy()
            bin_sums += bin_sums_per_ctx[ctx_idx].asnumpy()

        return bin_counts, bin_sums
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



