def score()

in src/mlm/scorers.py [0:0]


    def score(self, corpus: Corpus, temp: float = 1.0, split_size: int = 2000, ratio: float = 0, num_workers: int = 10, per_token: bool = False) -> List[float]:

        ctx_cpu = mx.Context('cpu')

        # Turn corpus into a BERT-ready Dataset
        dataset = self.corpus_to_dataset(corpus)

        # Turn Dataset into Dataloader
        batchify_fn = btf.Tuple(btf.Stack(dtype='int32'), btf.Pad(pad_val=self._vocab.token_to_idx[self._vocab.padding_token], dtype='int32'),
                              btf.Stack(dtype='float32'), btf.Stack(dtype='float32'),
                              btf.Stack(dtype='int32'), btf.Stack(dtype='float32'))

        # TODO: There is a 'by-design' bug in FixedBucketSampler with num_shards > 0, where it silently reuses the last utterances:
        # https://github.com/dmlc/gluon-nlp/blame/b1b61d3f90cf795c7b48b6d109db7b7b96fa21ff/src/gluonnlp/data/sampler.py#L398
        # batch_sampler = nlp.data.sampler.FixedBucketSampler([sent_tuple[2] for sent_tuple in dataset], batch_size=split_size, ratio=ratio, num_shards=len(self._ctxs), shuffle=False)
        # Hence, we use num_shards = 0 and do gluon's split_data
        batch_sampler = nlp.data.sampler.FixedBucketSampler([sent_tuple[2] for sent_tuple in dataset], batch_size=split_size, ratio=ratio, num_shards=0, shuffle=False)

        logging.info(batch_sampler.stats())
        dataloader = nlp.data.ShardedDataLoader(dataset, pin_memory=True, batch_sampler=batch_sampler, batchify_fn=batchify_fn, num_workers=num_workers, thread_pool=True)

        # Get lengths in tokens (assumes dataset is in order)
        prev_sent_idx = None
        true_tok_lens = []
        for (curr_sent_idx, _, valid_length, _, _, _) in dataset:
            if curr_sent_idx != prev_sent_idx:
                prev_sent_idx = curr_sent_idx
                if self._add_special:
                    true_tok_lens.append(valid_length - 2)
                else:
                    true_tok_lens.append(valid_length - 1)

        # Compute scores (total or per-position)
        if per_token:
            if self._add_special:
                scores_per_token = [[None]*(true_tok_len+2) for true_tok_len in true_tok_lens]
            else:
                scores_per_token = [[None]*(true_tok_len+1) for true_tok_len in true_tok_lens]
        else:
            scores = np.zeros((len(corpus),))

        sent_count = 0
        batch_log_interval = 20

        batch_score_accumulation = 1
        batch_sent_idxs_per_ctx = [[] for ctx in self._ctxs]
        batch_scores_per_ctx = [[] for ctx in self._ctxs]
        batch_masked_positions_per_ctx = [[] for ctx in self._ctxs]

        def sum_accumulated_scores():
            for ctx_idx in range(len(self._ctxs)):
                for batch_sent_idxs, batch_scores, batch_masked_positions in zip(batch_sent_idxs_per_ctx[ctx_idx], batch_scores_per_ctx[ctx_idx], batch_masked_positions_per_ctx[ctx_idx]):
                    if per_token:
                        # Slow; only use when necessary
                        for batch_sent_idx, batch_score, batch_masked_position in zip(batch_sent_idxs, batch_scores, batch_masked_positions):
                            scores_per_token[batch_sent_idx.asscalar()][int(batch_masked_position.asscalar())] = batch_score.asscalar().item()
                    else:
                        np.add.at(scores, batch_sent_idxs.asnumpy(), batch_scores.asnumpy())
                batch_sent_idxs_per_ctx[ctx_idx] = []
                batch_scores_per_ctx[ctx_idx] = []
                batch_masked_positions_per_ctx[ctx_idx] = []

        # For now just predicts the first non-cls token
        for batch_id, batch in enumerate(dataloader):

            batch_size = 0

            batch = zip(*[mx.gluon.utils.split_data(batch_compo, len(self._ctxs), batch_axis=0, even_split=False) for batch_compo in batch])

            for ctx_idx, (sent_idxs, token_ids, valid_length, masked_positions, token_masked_ids, normalization) in enumerate(batch):

                ctx = self._ctxs[ctx_idx]
                batch_size += sent_idxs.shape[0]
                token_ids = token_ids.as_in_context(ctx)
                valid_length = valid_length.as_in_context(ctx)
                masked_positions = masked_positions.as_in_context(ctx).reshape(-1, 1)

                if isinstance(self._model, RoBERTaModel):
                    out = self._model(token_ids, valid_length, masked_positions)
                else:
                    segment_ids = mx.nd.zeros(shape=token_ids.shape, ctx=ctx)
                    out = self._model(token_ids, segment_ids, valid_length, masked_positions)

                # Get the probability computed for the correct token
                split_size = token_ids.shape[0]
                # out[0] contains the representations
                # out[1] is what contains the distribution for the masked

                # TODO: Manual numerically-stable softmax
                # https://stackoverflow.com/questions/42599498/numercially-stable-softmax
                # Because we only need one scalar
                out = out[1].log_softmax(temperature=temp)

                # Save the scores at the masked indices
                batch_sent_idxs_per_ctx[ctx_idx].append(sent_idxs)
                out = out[list(range(split_size)), [0]*split_size, token_masked_ids.as_in_context(ctx).reshape(-1)]
                batch_scores_per_ctx[ctx_idx].append(out)
                batch_masked_positions_per_ctx[ctx_idx].append(masked_positions)

            # Ideally we'd accumulate the scores when possible, but something like the below won't work
            # > scores[sent_idxs] += out
            # See In[21] in https://jakevdp.github.io/PythonDataScienceHandbook/02.07-fancy-indexing.html.
            # Hence, aggregation is done synchronously, every so often
            # (though batch_score_accumulation = 1 seems best, since bucketing is effective in reducing GPU disparity)
            if len(batch_sent_idxs_per_ctx[0]) == batch_score_accumulation:   
                sum_accumulated_scores()

            # Progress
            sent_count += batch_size
            if (batch_id+1) % batch_log_interval == 0:
                logging.info("{} sents of {}, batch {} of {}".format(sent_count, len(dataset), batch_id+1, len(batch_sampler)))

        # In case there are leftovers
        sum_accumulated_scores()

        if per_token:
            return scores_per_token, true_tok_lens
        else:
            return scores.tolist(), true_tok_lens