def __init__()

in python/mxboard/writer.py [0:0]


    def __init__(self, logdir, max_queue=10, flush_secs=120, filename_suffix=None, verbose=True):
        """
        Creates a `SummaryWriter` and an event file.
        On construction the summary writer creates a new event file in `logdir`.
        This event file will contain `Event` protocol buffers constructed when you
        call one of the following functions: `add_audio()`, `add_embedding()`,
        `add_histogram()`, `add_image()`, `add_pr_curve()`, `add_scalar()`, and `add_text()`.
        Please make sure that the `logdir` used here for initiailizing `SummaryWriter`
        matches the `--logdir` parameter you passed to the `tensorboard` binary in the command line
        for launching TensorBoard.

        Parameters
        ----------
            logdir : str
                Directory where event file will be written.
            max_queue : int
                Size of the queue for pending events and summaries.
            flush_secs: Number
                How often, in seconds, to flush the pending events and summaries to disk.
            filename_suffix : str
                Every event file's name is suffixed with `filename_suffix` if provided.
            verbose : bool
                Determines whether to print the logging messages.
        """
        self._file_writer = FileWriter(logdir=logdir, max_queue=max_queue,
                                       flush_secs=flush_secs, filename_suffix=filename_suffix,
                                       verbose=verbose)
        self._max_queue = max_queue
        self._flush_secs = flush_secs
        self._filename_suffix = filename_suffix
        self._verbose = verbose
        # for writing scalars of different tags in the same plot
        self._all_writers = {self._file_writer.get_logdir(): self._file_writer}
        self._logger = None
        if verbose:
            self._logger = logging.getLogger(__name__)
            self._logger.setLevel(logging.INFO)
        self._default_bins = None
        self._text_tags = []
        # scalar value dict.
        # key: file_writer's logdir, value: list of [timestamp, global_step, value]
        self._scalar_dict = {}