in python/mxboard/writer.py [0:0]
def __init__(self, logdir, max_queue=10, flush_secs=120, filename_suffix=None, verbose=True):
"""
Creates a `SummaryWriter` and an event file.
On construction the summary writer creates a new event file in `logdir`.
This event file will contain `Event` protocol buffers constructed when you
call one of the following functions: `add_audio()`, `add_embedding()`,
`add_histogram()`, `add_image()`, `add_pr_curve()`, `add_scalar()`, and `add_text()`.
Please make sure that the `logdir` used here for initiailizing `SummaryWriter`
matches the `--logdir` parameter you passed to the `tensorboard` binary in the command line
for launching TensorBoard.
Parameters
----------
logdir : str
Directory where event file will be written.
max_queue : int
Size of the queue for pending events and summaries.
flush_secs: Number
How often, in seconds, to flush the pending events and summaries to disk.
filename_suffix : str
Every event file's name is suffixed with `filename_suffix` if provided.
verbose : bool
Determines whether to print the logging messages.
"""
self._file_writer = FileWriter(logdir=logdir, max_queue=max_queue,
flush_secs=flush_secs, filename_suffix=filename_suffix,
verbose=verbose)
self._max_queue = max_queue
self._flush_secs = flush_secs
self._filename_suffix = filename_suffix
self._verbose = verbose
# for writing scalars of different tags in the same plot
self._all_writers = {self._file_writer.get_logdir(): self._file_writer}
self._logger = None
if verbose:
self._logger = logging.getLogger(__name__)
self._logger.setLevel(logging.INFO)
self._default_bins = None
self._text_tags = []
# scalar value dict.
# key: file_writer's logdir, value: list of [timestamp, global_step, value]
self._scalar_dict = {}