in src/ppxgboost/PPBooster.py [0:0]
def predict_binary(trees, vector, default_base_score=0.5):
"""
Prediction on @vector over the @trees
:param default_base_score: default score is 0.5 (according to the xgboost -- global bias)
:param trees: list of trees
:param vector: a list of input vectors
:return: the prediction values (summation of the values from all the leafs)
"""
result = []
for index, row in vector.iterrows():
# compute the score for all of the input vectors
result.append(predict_single_input_binary(trees, row))
# returns result as np array
return np.array(result)