def predict_single_input_binary()

in src/ppxgboost/PPBooster.py [0:0]


def predict_single_input_binary(trees, vector, default_base_score=0.5):
    """
    return a prediction on a single vector.
    :param trees: a list of trees (model represenation)
    :param vector: a single input vector
    :param default_base_score: a default score is 0.5 (global bias)
    :return: the predicted score
    """
    predict_sum_score = default_base_score
    for t in trees:
        score = t.eval(vector)
        predict_sum_score += score
    return predict_sum_score