in src/sagemaker/FD_SL_DGL/gnn_fraud_detection_dgl/pytorch_model.py [0:0]
def forward(self, g, features):
# get embeddings for all node types. for user node type, use passed in user features
h_dict = {ntype: emb for ntype, emb in self.embed.items()}
# feat_para = torch.tensor(features)
h_dict['target'] = features
# pass through all layers
for i, layer in enumerate(self.layers[:-1]):
if i != 0:
h_dict = {k: F.leaky_relu(h) for k, h in h_dict.items()}
h_dict = layer(g, h_dict)
# get user logits
return self.layers[-1](h_dict['target'])