in amzn-smt-prediction/scripts/clean_eager_lazy_data.py [0:0]
def get_naive_big_encoding(param_sets):
f_dict = {}
f_dict['constraints'] = sum(p['constraints'] for p in param_sets)
f_dict['vars'] = sum(p['vars'] for p in param_sets)
f_dict['a_max'] = max(p['a_max'] for p in param_sets)
f_dict['b_max'] = max(p['b_max'] for p in param_sets)
f_dict['k'] = sum(p['k'] for p in param_sets)
f_dict['w'] = max(p['w'] for p in param_sets)
f_dict['bound'] = compute_bound(f_dict)
f_dict['benchmark'] = param_sets[0]['benchmark']
# All dicts in param_sets *should* have the same benchmark
# (They are multiple parameter sets from the same file)
return f_dict