in src/deep_demand_forecast/monitor.py [0:0]
def create_data_viz(train_df, test_df, context_length, prediction_length, num_sample_ts):
num_sample_ts = min(num_sample_ts, train_df.shape[1])
ts_col_names = list(train_df.columns)
selected_cols = ts_col_names[1:num_sample_ts]
selected_train_df = train_df.loc[:, ["time"] + selected_cols]
train_df_melt = pd.melt(
selected_train_df.tail(context_length),
id_vars=["time"],
value_vars=selected_cols,
)
train_df_melt.rename(columns={"variable": "covariate"}, inplace=True)
selected_test_df = test_df.loc[:, ["time"] + selected_cols]
num_train = selected_train_df.shape[0] - 1
test_df_melt = pd.melt(
selected_test_df.iloc[num_train : num_train + prediction_length],
id_vars=["time"],
value_vars=selected_cols,
)
test_df_melt.rename(columns={"variable": "covariate"}, inplace=True)
return train_df_melt, test_df_melt, selected_cols