in src/preprocess/preprocess.py [0:0]
def apply(self):
train_scale = map(self._max_normalize, iter(self.datasets.train))
unzip_train_scale = list(zip(*train_scale))
train = ListDataset(unzip_train_scale[0], freq=self.freq)
scales = unzip_train_scale[1]
test = None
if self.datasets.test is not None:
test_scale = zip(iter(self.datasets.test), scales)
test = ListDataset(
map(lambda x: self._max_normalize(x[0], x[1])[0], test_scale),
freq=self.freq,
)
self.datasets = TrainDatasets(self.datasets.metadata, train, test)
return self