def apply()

in src/preprocess/preprocess.py [0:0]


    def apply(self):
        train_scale = map(self._max_normalize, iter(self.datasets.train))
        unzip_train_scale = list(zip(*train_scale))
        train = ListDataset(unzip_train_scale[0], freq=self.freq)
        scales = unzip_train_scale[1]
        test = None
        if self.datasets.test is not None:
            test_scale = zip(iter(self.datasets.test), scales)
            test = ListDataset(
                map(lambda x: self._max_normalize(x[0], x[1])[0], test_scale),
                freq=self.freq,
            )

        self.datasets = TrainDatasets(self.datasets.metadata, train, test)
        return self