in src/sagemaker_defect_detection/detector.py [0:0]
def add_model_specific_args(parent_parser): # pragma: no-cover
parser = ArgumentParser(parents=[parent_parser], add_help=False)
aa = parser.add_argument
aa("--train-rpn", action="store_true")
aa("--train-roi", action="store_true")
aa("--finetune-rpn", action="store_true")
aa("--finetune-roi", action="store_true")
aa("--data-path", metavar="DIR", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
aa("--backbone", default="resnet34", help="backbone model either resnet34 (default) or resnet50")
aa("--num-classes", default=7, type=int, metavar="N", help="number of classes including the background")
aa(
"-b",
"--batch-size",
default=16,
type=int,
metavar="N",
help="mini-batch size (default: 16), this is the total "
"batch size of all GPUs on the current node when "
"using Data Parallel or Distributed Data Parallel",
)
aa(
"--lr",
"--learning-rate",
default=1e-3,
type=float,
metavar="LR",
help="initial learning rate",
dest="learning_rate",
)
aa("--momentum", default=0.9, type=float, metavar="M", help="momentum")
aa(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
aa("--seed", type=int, default=123, help="seed for initializing training")
aa("--pretrained-mfn-ckpt", type=str)
aa("--pretrained-rpn-ckpt", type=str)
aa("--pretrained-roi-ckpt", type=str)
aa("--finetuned-rpn-ckpt", type=str)
aa("--finetuned-roi-ckpt", type=str)
aa("--resume-from-checkpoint", type=str)
aa("--resume-sagemaker-from-checkpoint", type=str, default=os.getenv("SM_CHANNEL_PRETRAINED_CHECKPOINT", None))
return parser