in src/sagemaker_defect_detection/detector.py [0:0]
def validation_step(self, batch, batch_idx):
images, targets, _ = batch
if self.train_rpn: # rpn doesn't compute loss for val
return {}
elif self.train_roi:
# TODO: scores are predictions scores, not a metric! iou? + acc?
return {}
else:
images = list(image for image in images)
targets = [{k: v for k, v in t.items()} for t in targets]
outputs = self(images, targets=targets)
ret = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
self.coco_evaluator.update(ret)
return {}