in sagemaker_notebook_instance/containers/summarization/entry_point.py [0:0]
def predict_fn(request_body, model_assets):
input_text = request_body["text"]
summarizer = model_assets['summarizer']
summaries = summarizer(
input_text,
max_length=get_parameter(request_body, 'max_length', 130),
min_length=get_parameter(request_body, 'min_length', 30),
do_sample=get_parameter(request_body, 'do_sample', 'true') == 'true'
)
summary = summaries[0]['summary_text']
return {"summary": summary}