in source/sagemaker/src/package/data_privatization/container/train.py [0:0]
def train_one_epoch(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.review).squeeze(1)
loss = criterion(predictions, batch.sentiment)
acc = binary_accuracy(predictions, batch.sentiment)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)