sockeye/beam_search_pt.py (6 lines): - line 32: # TODO (fhieber): Consider making inference classes regular modules (or move logic into the model module) - line 590: # TODO: check for disabled predicted output length - line 611: # TODO: return unnormalized proper score - line 756: # TODO: Consider joint tensor for all target factors - line 896: # TODO: consider automatically selecting GreedySearch if flags to this method are compatible. - line 905: assert not prevent_unk, "Greedy Search does not support prevention of unknown tokens" # TODO: add support sockeye/beam_search.py (4 lines): - line 597: # TODO: check for disabled predicted output length - line 617: score = np.array([-1.]) # TODO: return unnormalized proper score - line 941: # TODO: consider automatically selecting GreedySearch if flags to this method are compatible. - line 950: assert not prevent_unk, "Greedy Search does not support prevention of unknown tokens" # TODO: add support sockeye/model_pt.py (3 lines): - line 128: # TODO also consider weight tying with target factor input embeddings - line 170: # TODO: figure out int8 quantization of OutputLayer, supporting weight tying & vocabulary selection - line 610: # TODO: consider using gain=1 / math.sqrt(2) sockeye/model.py (3 lines): - line 130: # TODO also consider weight tying with target factor input embeddings - line 260: # TODO: consider a dictionary mapping as return value - line 650: # TODO: check for missing parameters somehow (we allowed scaling to be missing) sockeye/constants.py (2 lines): - line 46: # TODO: make this configurable in the model, separately per target factor. - line 74: # TODO replace options list (e.g ENCODERS, DECODERS, ...) with Enum classes sockeye/layers_pt.py (2 lines): - line 198: # TODO: port NVIDIAs implementation to PT C++ custom op - line 226: # TODO: port NVIDIAs implementation to PT C++ custom op sockeye/checkpoint_decoder.py (1 line): - line 132: # TODO: possibly support decoding on multiple GPUs sockeye/encoder.py (1 line): - line 196: # TODO DEPRECATE, NO LONGER USED sockeye/training.py (1 line): - line 522: # overwriting here. TODO: make this better... setup.py (1 line): - line 77: # TODO: deprecate mxnet CLIs sockeye/decoder_pt.py (1 line): - line 34: # TODO: while we still have both transformer.TransformerConfig and transformer_pt.TransformerConfig, sockeye/scoring_pt.py (1 line): - line 122: # TODO: scoring should support multiple devices sockeye/data_io.py (1 line): - line 203: # TODO: This is a legacy step from the bucketing module version of Sockeye. sockeye/loss_pt.py (1 line): - line 150: self._reduction = 'mean' # TODO: consider sum reduction and normalization outside of loss for reporting