syne_tune/optimizer/schedulers/searchers/cost_aware_gp_fifo_searcher.py [110:121]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            init_state=init_state,
            local_minimizer_class=self.local_minimizer_class,
            output_skip_optimization=output_skip_optimization,
            num_initial_candidates=self.num_initial_candidates,
            num_initial_random_choices=self.num_initial_random_choices,
            initial_scoring=self.initial_scoring,
            cost_attr=self._cost_attr,
            resource_attr=self._resource_attr)
        new_searcher._restore_from_state(state)
        # Invalidate self (must not be used afterwards)
        self.state_transformer = None
        return new_searcher
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



syne_tune/optimizer/schedulers/searchers/cost_aware_gp_multifidelity_searcher.py [117:128]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            init_state=init_state,
            local_minimizer_class=self.local_minimizer_class,
            output_skip_optimization=output_skip_optimization,
            num_initial_candidates=self.num_initial_candidates,
            num_initial_random_choices=self.num_initial_random_choices,
            initial_scoring=self.initial_scoring,
            cost_attr=self._cost_attr,
            resource_attr=self._resource_attr)
        new_searcher._restore_from_state(state)
        # Invalidate self (must not be used afterwards)
        self.state_transformer = None
        return new_searcher
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



