syne_tune/optimizer/schedulers/searchers/bayesopt/gpautograd/learncurve/likelihood.py [66:76]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if mean is None:
            mean = ScalarMeanFunction()
        if initial_noise_variance is None:
            initial_noise_variance = INITIAL_NOISE_VARIANCE
        if encoding_type is None:
            encoding_type = DEFAULT_ENCODING
        self.encoding = create_encoding(
             encoding_type, initial_noise_variance, NOISE_VARIANCE_LOWER_BOUND,
             NOISE_VARIANCE_UPPER_BOUND, 1, Gamma(mean=0.1, alpha=0.1))
        self.mean = mean
        self.kernel = kernel
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



syne_tune/optimizer/schedulers/searchers/bayesopt/gpautograd/likelihood.py [48:58]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if mean is None:
            mean = ScalarMeanFunction()
        if initial_noise_variance is None:
            initial_noise_variance = INITIAL_NOISE_VARIANCE
        if encoding_type is None:
            encoding_type = DEFAULT_ENCODING
        self.encoding = create_encoding(
             encoding_type, initial_noise_variance, NOISE_VARIANCE_LOWER_BOUND,
             NOISE_VARIANCE_UPPER_BOUND, 1, Gamma(mean=0.1, alpha=0.1))
        self.mean = mean
        self.kernel = kernel
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



