syne_tune/optimizer/schedulers/searchers/constrained_gp_fifo_searcher.py [86:99]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            configspace=self.configspace,
            metric=self._metric,
            clone_from_state=True,
            hp_ranges=self.hp_ranges,
            output_model_factory=output_model_factory,
            acquisition_class=self.acquisition_class,
            map_reward=self.map_reward,
            init_state=init_state,
            local_minimizer_class=self.local_minimizer_class,
            output_skip_optimization=output_skip_optimization,
            num_initial_candidates=self.num_initial_candidates,
            num_initial_random_choices=self.num_initial_random_choices,
            initial_scoring=self.initial_scoring,
            cost_attr=self._cost_attr,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



syne_tune/optimizer/schedulers/searchers/cost_aware_gp_fifo_searcher.py [103:116]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            configspace=self.configspace,
            metric=self._metric,
            clone_from_state=True,
            hp_ranges=self.hp_ranges,
            output_model_factory=output_model_factory,
            acquisition_class=self.acquisition_class,
            map_reward=self.map_reward,
            init_state=init_state,
            local_minimizer_class=self.local_minimizer_class,
            output_skip_optimization=output_skip_optimization,
            num_initial_candidates=self.num_initial_candidates,
            num_initial_random_choices=self.num_initial_random_choices,
            initial_scoring=self.initial_scoring,
            cost_attr=self._cost_attr,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



