in DeepLens/greengrassHelloWorld.py [0:0]
def greengrass_infinite_infer_run():
input_height = 224
input_width = 224
model_name = 'featurizer-v1'
error, model_path = mo.optimize(model_name, input_width, input_height)
if error != 0:
client.publish(topic=iot_topic, payload="Model optimization FAILED")
else:
client.publish(topic=iot_topic, payload="Model optimization SUCCEEDED")
model = awscam.Model(model_path, {"GPU" : 1})
client.publish(topic=iot_topic, payload="Model loaded SUCCESSFULLY")
while True:
ret, frame = awscam.getLastFrame()
if not ret:
client.publish(topic=iot_topic, payload="FAILED to get frame")
else:
client.publish(topic=iot_topic, payload="frame retrieved")
frame_resize = cv2.resize(frame, (input_width, input_height))
infer_output = model.doInference(frame_resize)
features_numpy = None
for _, val in infer_output.iteritems():
features_numpy = val
features_string = ','.join(str(e) for e in features_numpy)
msg = '{ "features": "' + features_string + '" }'
client.publish(topic=iot_topic, payload=msg)