def get_assert()

in skills/summarization/evaluation/custom_evals/llm_eval.py [0:0]


def get_assert(output: str, context, threshold=0.5) -> Union[bool, float, Dict[str, Any]]:
    input = context['vars']['input']
    score, evaluation = llm_eval(output, input)

    # 4 different dimensions we measure performance on
    normalized_score = score / 4 
    
    if normalized_score >= threshold:
        return {
            "pass": True,
            "score": score,
            "reason": evaluation
        }
    else:
        return {
        "pass": False,
        "score": score,
        "reason": evaluation
        }