def load_data()

in skills/classification/evaluation/vectordb.py [0:0]


    def load_data(self, data):
        # Check if the vector database is already loaded
        if self.embeddings and self.metadata:
            print("Vector database is already loaded. Skipping data loading.")
            return
        # Check if vector_db.pkl exists
        if os.path.exists(self.db_path):
            print("Loading vector database from disk.")
            self.load_db()
            return

        texts = [item["text"] for item in data]

        # Embed more than 128 documents with a for loop
        batch_size = 128
        result = [
            self.client.embed(
                texts[i : i + batch_size],
                model="voyage-2"
            ).embeddings
            for i in range(0, len(texts), batch_size)
        ]

        # Flatten the embeddings
        self.embeddings = [embedding for batch in result for embedding in batch]
        self.metadata = [item for item in data]
        # Save the vector database to disk
        print("Vector database loaded and saved.")