def load_data()

in skills/retrieval_augmented_generation/evaluation/vectordb.py [0:0]


    def load_data(self, data):
        if self.embeddings and self.metadata:
            print("Vector database is already loaded. Skipping data loading.")
            return
        if os.path.exists(self.db_path):
            print("Loading vector database from disk.")
            self.load_db()
            return
        
        texts = [f"{item['chunk_heading']}\n\n{item['text']}\n\n{item['summary']}" for item in data]  # Embed Chunk Heading + Text + Summary Together
        self._embed_and_store(texts, data)
        self.save_db()
        print("Vector database loaded and saved.")