in skills/retrieval_augmented_generation/evaluation/vectordb.py [0:0]
def _embed_and_store(self, texts, data):
batch_size = 128
result = [
self.client.embed(
texts[i : i + batch_size],
model="voyage-2"
).embeddings
for i in range(0, len(texts), batch_size)
]
self.embeddings = [embedding for batch in result for embedding in batch]
self.metadata = data