rbi/lib/anthropic/models/message_count_tokens_params.rbi (167 lines of code) (raw):
# typed: strong
module Anthropic
module Models
class MessageCountTokensParams < Anthropic::Internal::Type::BaseModel
extend Anthropic::Internal::Type::RequestParameters::Converter
include Anthropic::Internal::Type::RequestParameters
# Input messages.
#
# Our models are trained to operate on alternating `user` and `assistant`
# conversational turns. When creating a new `Message`, you specify the prior
# conversational turns with the `messages` parameter, and the model then generates
# the next `Message` in the conversation. Consecutive `user` or `assistant` turns
# in your request will be combined into a single turn.
#
# Each input message must be an object with a `role` and `content`. You can
# specify a single `user`-role message, or you can include multiple `user` and
# `assistant` messages.
#
# If the final message uses the `assistant` role, the response content will
# continue immediately from the content in that message. This can be used to
# constrain part of the model's response.
#
# Example with a single `user` message:
#
# ```json
# [{ "role": "user", "content": "Hello, Claude" }]
# ```
#
# Example with multiple conversational turns:
#
# ```json
# [
# { "role": "user", "content": "Hello there." },
# { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
# { "role": "user", "content": "Can you explain LLMs in plain English?" }
# ]
# ```
#
# Example with a partially-filled response from Claude:
#
# ```json
# [
# {
# "role": "user",
# "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
# },
# { "role": "assistant", "content": "The best answer is (" }
# ]
# ```
#
# Each input message `content` may be either a single `string` or an array of
# content blocks, where each block has a specific `type`. Using a `string` for
# `content` is shorthand for an array of one content block of type `"text"`. The
# following input messages are equivalent:
#
# ```json
# { "role": "user", "content": "Hello, Claude" }
# ```
#
# ```json
# { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
# ```
#
# Starting with Claude 3 models, you can also send image content blocks:
#
# ```json
# {
# "role": "user",
# "content": [
# {
# "type": "image",
# "source": {
# "type": "base64",
# "media_type": "image/jpeg",
# "data": "/9j/4AAQSkZJRg..."
# }
# },
# { "type": "text", "text": "What is in this image?" }
# ]
# }
# ```
#
# We currently support the `base64` source type for images, and the `image/jpeg`,
# `image/png`, `image/gif`, and `image/webp` media types.
#
# See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
# more input examples.
#
# Note that if you want to include a
# [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
# the top-level `system` parameter — there is no `"system"` role for input
# messages in the Messages API.
sig { returns(T::Array[Anthropic::Models::MessageParam]) }
attr_accessor :messages
# The model that will complete your prompt.\n\nSee
# [models](https://docs.anthropic.com/en/docs/models-overview) for additional
# details and options.
sig { returns(T.any(Anthropic::Models::Model::OrSymbol, String)) }
attr_accessor :model
# System prompt.
#
# A system prompt is a way of providing context and instructions to Claude, such
# as specifying a particular goal or role. See our
# [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
sig { returns(T.nilable(T.any(String, T::Array[Anthropic::Models::TextBlockParam]))) }
attr_reader :system_
sig do
params(
system_: T.any(String, T::Array[T.any(Anthropic::Models::TextBlockParam, Anthropic::Internal::AnyHash)])
)
.void
end
attr_writer :system_
# Configuration for enabling Claude's extended thinking.
#
# When enabled, responses include `thinking` content blocks showing Claude's
# thinking process before the final answer. Requires a minimum budget of 1,024
# tokens and counts towards your `max_tokens` limit.
#
# See
# [extended thinking](https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking)
# for details.
sig do
returns(
T.nilable(T.any(Anthropic::Models::ThinkingConfigEnabled, Anthropic::Models::ThinkingConfigDisabled))
)
end
attr_reader :thinking
sig do
params(
thinking: T.any(
Anthropic::Models::ThinkingConfigEnabled,
Anthropic::Internal::AnyHash,
Anthropic::Models::ThinkingConfigDisabled
)
)
.void
end
attr_writer :thinking
# How the model should use the provided tools. The model can use a specific tool,
# any available tool, decide by itself, or not use tools at all.
sig do
returns(
T.nilable(
T.any(
Anthropic::Models::ToolChoiceAuto,
Anthropic::Models::ToolChoiceAny,
Anthropic::Models::ToolChoiceTool,
Anthropic::Models::ToolChoiceNone
)
)
)
end
attr_reader :tool_choice
sig do
params(
tool_choice: T.any(
Anthropic::Models::ToolChoiceAuto,
Anthropic::Internal::AnyHash,
Anthropic::Models::ToolChoiceAny,
Anthropic::Models::ToolChoiceTool,
Anthropic::Models::ToolChoiceNone
)
)
.void
end
attr_writer :tool_choice
# Definitions of tools that the model may use.
#
# If you include `tools` in your API request, the model may return `tool_use`
# content blocks that represent the model's use of those tools. You can then run
# those tools using the tool input generated by the model and then optionally
# return results back to the model using `tool_result` content blocks.
#
# Each tool definition includes:
#
# - `name`: Name of the tool.
# - `description`: Optional, but strongly-recommended description of the tool.
# - `input_schema`: [JSON schema](https://json-schema.org/draft/2020-12) for the
# tool `input` shape that the model will produce in `tool_use` output content
# blocks.
#
# For example, if you defined `tools` as:
#
# ```json
# [
# {
# "name": "get_stock_price",
# "description": "Get the current stock price for a given ticker symbol.",
# "input_schema": {
# "type": "object",
# "properties": {
# "ticker": {
# "type": "string",
# "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
# }
# },
# "required": ["ticker"]
# }
# }
# ]
# ```
#
# And then asked the model "What's the S&P 500 at today?", the model might produce
# `tool_use` content blocks in the response like this:
#
# ```json
# [
# {
# "type": "tool_use",
# "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
# "name": "get_stock_price",
# "input": { "ticker": "^GSPC" }
# }
# ]
# ```
#
# You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
# input, and return the following back to the model in a subsequent `user`
# message:
#
# ```json
# [
# {
# "type": "tool_result",
# "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
# "content": "259.75 USD"
# }
# ]
# ```
#
# Tools can be used for workflows that include running client-side tools and
# functions, or more generally whenever you want the model to produce a particular
# JSON structure of output.
#
# See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
sig do
returns(
T.nilable(
T::Array[
T.any(
Anthropic::Models::Tool,
Anthropic::Models::ToolBash20250124,
Anthropic::Models::ToolTextEditor20250124
)
]
)
)
end
attr_reader :tools
sig do
params(
tools: T::Array[
T.any(
Anthropic::Models::Tool,
Anthropic::Internal::AnyHash,
Anthropic::Models::ToolBash20250124,
Anthropic::Models::ToolTextEditor20250124
)
]
)
.void
end
attr_writer :tools
sig do
params(
messages: T::Array[T.any(Anthropic::Models::MessageParam, Anthropic::Internal::AnyHash)],
model: T.any(Anthropic::Models::Model::OrSymbol, String),
system_: T.any(String, T::Array[T.any(Anthropic::Models::TextBlockParam, Anthropic::Internal::AnyHash)]),
thinking: T.any(
Anthropic::Models::ThinkingConfigEnabled,
Anthropic::Internal::AnyHash,
Anthropic::Models::ThinkingConfigDisabled
),
tool_choice: T.any(
Anthropic::Models::ToolChoiceAuto,
Anthropic::Internal::AnyHash,
Anthropic::Models::ToolChoiceAny,
Anthropic::Models::ToolChoiceTool,
Anthropic::Models::ToolChoiceNone
),
tools: T::Array[
T.any(
Anthropic::Models::Tool,
Anthropic::Internal::AnyHash,
Anthropic::Models::ToolBash20250124,
Anthropic::Models::ToolTextEditor20250124
)
],
request_options: T.any(Anthropic::RequestOptions, Anthropic::Internal::AnyHash)
)
.returns(T.attached_class)
end
def self.new(
messages:,
model:,
system_: nil,
thinking: nil,
tool_choice: nil,
tools: nil,
request_options: {}
)
end
sig do
override
.returns(
{
messages: T::Array[Anthropic::Models::MessageParam],
model: T.any(Anthropic::Models::Model::OrSymbol, String),
system_: T.any(String, T::Array[Anthropic::Models::TextBlockParam]),
thinking: T.any(Anthropic::Models::ThinkingConfigEnabled, Anthropic::Models::ThinkingConfigDisabled),
tool_choice: T.any(
Anthropic::Models::ToolChoiceAuto,
Anthropic::Models::ToolChoiceAny,
Anthropic::Models::ToolChoiceTool,
Anthropic::Models::ToolChoiceNone
),
tools: T::Array[
T.any(
Anthropic::Models::Tool,
Anthropic::Models::ToolBash20250124,
Anthropic::Models::ToolTextEditor20250124
)
],
request_options: Anthropic::RequestOptions
}
)
end
def to_hash; end
# System prompt.
#
# A system prompt is a way of providing context and instructions to Claude, such
# as specifying a particular goal or role. See our
# [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
module System
extend Anthropic::Internal::Type::Union
sig { override.returns([String, T::Array[Anthropic::Models::TextBlockParam]]) }
def self.variants; end
TextBlockParamArray =
T.let(
Anthropic::Internal::Type::ArrayOf[Anthropic::Models::TextBlockParam],
Anthropic::Internal::Type::Converter
)
end
end
end
end