def cpu_times_percent()

in ambari-metrics-host-monitoring/src/main/python/psutil/psutil/__init__.py [0:0]


def cpu_times_percent(interval=None, percpu=False):
    """Same as cpu_percent() but provides utilization percentages
    for each specific CPU time as is returned by cpu_times().
    For instance, on Linux we'll get:

      >>> cpu_times_percent()
      cpupercent(user=4.8, nice=0.0, system=4.8, idle=90.5, iowait=0.0,
                 irq=0.0, softirq=0.0, steal=0.0, guest=0.0, guest_nice=0.0)
      >>>

    interval and percpu arguments have the same meaning as in
    cpu_percent().
    """
    global _last_cpu_times_2
    global _last_per_cpu_times_2
    blocking = interval is not None and interval > 0.0

    def calculate(t1, t2):
        nums = []
        all_delta = sum(t2) - sum(t1)
        for field in t1._fields:
            field_delta = getattr(t2, field) - getattr(t1, field)
            try:
                field_perc = (100 * field_delta) / all_delta
            except ZeroDivisionError:
                field_perc = 0.0
            field_perc = round(field_perc, 1)
            if _WINDOWS:
                # XXX
                # Work around:
                # https://code.google.com/p/psutil/issues/detail?id=392
                # CPU times are always supposed to increase over time
                # or at least remain the same and that's because time
                # cannot go backwards.
                # Surprisingly sometimes this might not be the case on
                # Windows where 'system' CPU time can be smaller
                # compared to the previous call, resulting in corrupted
                # percentages (< 0 or > 100).
                # I really don't know what to do about that except
                # forcing the value to 0 or 100.
                if field_perc > 100.0:
                    field_perc = 100.0
                elif field_perc < 0.0:
                    field_perc = 0.0
            nums.append(field_perc)
        return _psplatform.scputimes(*nums)

    # system-wide usage
    if not percpu:
        if blocking:
            t1 = cpu_times()
            time.sleep(interval)
        else:
            t1 = _last_cpu_times_2
        _last_cpu_times_2 = cpu_times()
        return calculate(t1, _last_cpu_times_2)
    # per-cpu usage
    else:
        ret = []
        if blocking:
            tot1 = cpu_times(percpu=True)
            time.sleep(interval)
        else:
            tot1 = _last_per_cpu_times_2
        _last_per_cpu_times_2 = cpu_times(percpu=True)
        for t1, t2 in zip(tot1, _last_per_cpu_times_2):
            ret.append(calculate(t1, t2))
        return ret