threadproc/netware/thread.c (291 lines of code) (raw):
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr.h"
#include "apr_portable.h"
#include "apr_strings.h"
#include "apr_arch_threadproc.h"
static int thread_count = 0;
apr_status_t apr_threadattr_create(apr_threadattr_t **new,
apr_pool_t *pool)
{
(*new) = (apr_threadattr_t *)apr_palloc(pool,
sizeof(apr_threadattr_t));
if ((*new) == NULL) {
return APR_ENOMEM;
}
(*new)->pool = pool;
(*new)->stack_size = APR_DEFAULT_STACK_SIZE;
(*new)->detach = 0;
(*new)->thread_name = NULL;
return APR_SUCCESS;
}
apr_status_t apr_threadattr_detach_set(apr_threadattr_t *attr,apr_int32_t on)
{
attr->detach = on;
return APR_SUCCESS;
}
apr_status_t apr_threadattr_detach_get(apr_threadattr_t *attr)
{
if (attr->detach == 1)
return APR_DETACH;
return APR_NOTDETACH;
}
APR_DECLARE(apr_status_t) apr_threadattr_stacksize_set(apr_threadattr_t *attr,
apr_size_t stacksize)
{
attr->stack_size = stacksize;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_threadattr_guardsize_set(apr_threadattr_t *attr,
apr_size_t size)
{
return APR_ENOTIMPL;
}
APR_DECLARE(apr_status_t) apr_threadattr_max_free_set(apr_threadattr_t *attr,
apr_size_t size)
{
attr->max_free = size;
return APR_SUCCESS;
}
#if APR_HAS_THREAD_LOCAL
static APR_THREAD_LOCAL apr_thread_t *current_thread = NULL;
#endif
static void *dummy_worker(void *opaque)
{
apr_thread_t *thd = (apr_thread_t *)opaque;
void *ret;
#if APR_HAS_THREAD_LOCAL
current_thread = thd;
#endif
apr_pool_owner_set(thd->pool, 0);
ret = thd->func(thd, thd->data);
if (thd->detached) {
apr_pool_destroy(thd->pool);
}
return ret;
}
static apr_status_t alloc_thread(apr_thread_t **new,
apr_threadattr_t *attr,
apr_thread_start_t func, void *data,
apr_pool_t *pool)
{
apr_status_t stat;
apr_abortfunc_t abort_fn = apr_pool_abort_get(pool);
apr_pool_t *p;
/* The thread can be detached anytime (from the creation or later with
* apr_thread_detach), so it needs its own pool and allocator to not
* depend on a parent pool which could be destroyed before the thread
* exits. The allocator needs no mutex obviously since the pool should
* not be used nor create children pools outside the thread. Passing
* NULL allocator will create one like that.
*/
stat = apr_pool_create_unmanaged_ex(&p, abort_fn, NULL);
if (stat != APR_SUCCESS) {
return stat;
}
if (attr && attr->max_free) {
apr_allocator_max_free_set(apr_pool_allocator_get(p), attr->max_free);
}
(*new) = (apr_thread_t *)apr_pcalloc(p, sizeof(apr_thread_t));
if ((*new) == NULL) {
apr_pool_destroy(p);
return APR_ENOMEM;
}
(*new)->pool = p;
(*new)->data = data;
(*new)->func = func;
(*new)->exitval = -1;
(*new)->detached = (attr && apr_threadattr_detach_get(attr) == APR_DETACH);
if (attr && attr->thread_name) {
(*new)->thread_name = apr_pstrndup(p, ttr->thread_name,
NX_MAX_OBJECT_NAME_LEN);
}
else {
(*new)->thread_name = apr_psprintf(p, "APR_thread %04d",
++thread_count);
}
if ((*new)->thread_name == NULL) {
apr_pool_destroy(p);
return APR_ENOMEM;
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_create(apr_thread_t **new,
apr_threadattr_t *attr,
apr_thread_start_t func,
void *data,
apr_pool_t *pool)
{
apr_status_t stat;
unsigned long flags = NX_THR_BIND_CONTEXT;
size_t stack_size = APR_DEFAULT_STACK_SIZE;
stat = alloc_thread(new, attr, func, data, pool);
if (stat != APR_SUCCESS) {
return stat;
}
/* An original stack size of 0 will allow NXCreateThread() to
* assign a default system stack size. An original stack
* size of less than 0 will assign the APR default stack size.
* anything else will be taken as is.
*/
if (attr && (attr->stack_size >= 0)) {
stack_size = attr->stack_size;
}
if (attr && attr->detach) {
flags |= NX_THR_DETACHED;
}
(*new)->ctx = NXContextAlloc(
/* void(*start_routine)(void *arg) */ (void (*)(void *)) dummy_worker,
/* void *arg */ (*new),
/* int priority */ NX_PRIO_MED,
/* size_t stackSize */ stack_size,
/* unsigned long flags */ NX_CTX_NORMAL,
/* int *error */ &stat);
(void) NXContextSetName(
/* NXContext_t ctx */ (*new)->ctx,
/* const char *name */ (*new)->thread_name);
stat = NXThreadCreate(
/* NXContext_t context */ (*new)->ctx,
/* unsigned long flags */ flags,
/* NXThreadId_t *thread_id */ &(*new)->td);
if (stat) {
apr_pool_destroy((*new)->pool);
return stat;
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_current_create(apr_thread_t **current,
apr_threadattr_t *attr,
apr_pool_t *pool)
{
#if APR_HAS_THREAD_LOCAL
apr_status_t stat;
*current = apr_thread_current();
if (*current) {
return APR_EEXIST;
}
stat = alloc_thread(current, attr, NULL, NULL, pool);
if (stat != APR_SUCCESS) {
*current = NULL;
return stat;
}
(*current)->td = apr_os_thread_current();
current_thread = *current;
return APR_SUCCESS;
#else
return APR_ENOTIMPL;
#endif
}
APR_DECLARE(void) apr_thread_current_after_fork(void)
{
#if APR_HAS_THREAD_LOCAL
current_thread = NULL;
#endif
}
APR_DECLARE(apr_thread_t *) apr_thread_current(void)
{
#if APR_HAS_THREAD_LOCAL
return current_thread;
#else
return NULL;
#endif
}
apr_os_thread_t apr_os_thread_current()
{
return NXThreadGetId();
}
int apr_os_thread_equal(apr_os_thread_t tid1, apr_os_thread_t tid2)
{
return (tid1 == tid2);
}
void apr_thread_yield()
{
NXThreadYield();
}
void apr_thread_exit(apr_thread_t *thd, apr_status_t retval)
{
thd->exitval = retval;
if (thd->detached) {
apr_pool_destroy(thd->pool);
}
NXThreadExit(NULL);
}
apr_status_t apr_thread_join(apr_status_t *retval,
apr_thread_t *thd)
{
apr_status_t stat;
NXThreadId_t dthr;
if (thd->detached) {
return APR_EINVAL;
}
if ((stat = NXThreadJoin(thd->td, &dthr, NULL)) == 0) {
*retval = thd->exitval;
apr_pool_destroy(thd->pool);
return APR_SUCCESS;
}
else {
return stat;
}
}
apr_status_t apr_thread_detach(apr_thread_t *thd)
{
if (thd->detached) {
return APR_EINVAL;
}
thd->detached = 1;
return APR_SUCCESS;
}
apr_status_t apr_thread_data_get(void **data, const char *key,
apr_thread_t *thread)
{
if (thread == NULL) {
*data = NULL;
return APR_ENOTHREAD;
}
return apr_pool_userdata_get(data, key, thread->pool);
}
apr_status_t apr_thread_data_set(void *data, const char *key,
apr_status_t (*cleanup) (void *),
apr_thread_t *thread)
{
if (thread == NULL) {
return APR_ENOTHREAD;
}
return apr_pool_userdata_set(data, key, cleanup, thread->pool);
}
APR_DECLARE(apr_status_t) apr_os_thread_get(apr_os_thread_t **thethd,
apr_thread_t *thd)
{
if (thd == NULL) {
return APR_ENOTHREAD;
}
*thethd = &(thd->td);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_os_thread_put(apr_thread_t **thd,
apr_os_thread_t *thethd,
apr_pool_t *pool)
{
if (pool == NULL) {
return APR_ENOPOOL;
}
if ((*thd) == NULL) {
(*thd) = (apr_thread_t *)apr_palloc(pool, sizeof(apr_thread_t));
(*thd)->pool = pool;
}
(*thd)->td = *thethd;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_once_init(apr_thread_once_t **control,
apr_pool_t *p)
{
(*control) = apr_pcalloc(p, sizeof(**control));
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_once(apr_thread_once_t *control,
void (*func)(void))
{
if (!atomic_xchg(&control->value, 1)) {
func();
}
return APR_SUCCESS;
}
APR_POOL_IMPLEMENT_ACCESSOR(thread)
APR_DECLARE(apr_status_t) apr_thread_name_set(const char *name,
apr_thread_t *thread,
apr_pool_t *pool)
{
return APR_ENOTIMPL;
}
APR_DECLARE(apr_status_t) apr_thread_name_get(char ** name,
apr_thread_t *thread,
apr_pool_t *pool)
{
return APR_ENOTIMPL;
}