parquet/benches/arrow_statistics.rs (228 lines of code) (raw):
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Benchmarks of benchmark for extracting arrow statistics from parquet
use arrow::array::{ArrayRef, DictionaryArray, Float64Array, StringArray, UInt64Array};
use arrow_array::{Int32Array, Int64Array, RecordBatch};
use arrow_schema::{
DataType::{self, *},
Field, Schema,
};
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion};
use parquet::{arrow::arrow_reader::ArrowReaderOptions, file::properties::WriterProperties};
use parquet::{
arrow::{arrow_reader::ArrowReaderBuilder, ArrowWriter},
file::properties::EnabledStatistics,
};
use std::sync::Arc;
use tempfile::NamedTempFile;
#[derive(Debug, Clone)]
enum TestTypes {
UInt64,
Int64,
F64,
String,
Dictionary,
}
use parquet::arrow::arrow_reader::statistics::StatisticsConverter;
use std::fmt;
impl fmt::Display for TestTypes {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
TestTypes::UInt64 => write!(f, "UInt64"),
TestTypes::Int64 => write!(f, "Int64"),
TestTypes::F64 => write!(f, "F64"),
TestTypes::String => write!(f, "String"),
TestTypes::Dictionary => write!(f, "Dictionary(Int32, String)"),
}
}
}
fn create_parquet_file(
dtype: TestTypes,
row_groups: usize,
data_page_row_count_limit: &Option<usize>,
) -> NamedTempFile {
let schema = match dtype {
TestTypes::UInt64 => Arc::new(Schema::new(vec![Field::new("col", DataType::UInt64, true)])),
TestTypes::Int64 => Arc::new(Schema::new(vec![Field::new("col", DataType::Int64, true)])),
TestTypes::F64 => Arc::new(Schema::new(vec![Field::new(
"col",
DataType::Float64,
true,
)])),
TestTypes::String => Arc::new(Schema::new(vec![Field::new("col", DataType::Utf8, true)])),
TestTypes::Dictionary => Arc::new(Schema::new(vec![Field::new(
"col",
DataType::Dictionary(Box::new(Int32), Box::new(Utf8)),
true,
)])),
};
let mut props = WriterProperties::builder().set_max_row_group_size(row_groups);
if let Some(limit) = data_page_row_count_limit {
props = props
.set_data_page_row_count_limit(*limit)
.set_statistics_enabled(EnabledStatistics::Page);
};
let props = props.build();
let file = tempfile::Builder::new()
.suffix(".parquet")
.tempfile()
.unwrap();
let mut writer =
ArrowWriter::try_new(file.reopen().unwrap(), schema.clone(), Some(props)).unwrap();
for _ in 0..row_groups {
let batch = match dtype {
TestTypes::UInt64 => make_uint64_batch(),
TestTypes::Int64 => make_int64_batch(),
TestTypes::F64 => make_f64_batch(),
TestTypes::String => make_string_batch(),
TestTypes::Dictionary => make_dict_batch(),
};
if data_page_row_count_limit.is_some() {
// Send batches one at a time. This allows the
// writer to apply the page limit, that is only
// checked on RecordBatch boundaries.
for i in 0..batch.num_rows() {
writer.write(&batch.slice(i, 1)).unwrap();
}
} else {
writer.write(&batch).unwrap();
}
}
writer.close().unwrap();
file
}
fn make_uint64_batch() -> RecordBatch {
let array: ArrayRef = Arc::new(UInt64Array::from(vec![
Some(1),
Some(2),
Some(3),
Some(4),
Some(5),
]));
RecordBatch::try_new(
Arc::new(arrow::datatypes::Schema::new(vec![
arrow::datatypes::Field::new("col", UInt64, false),
])),
vec![array],
)
.unwrap()
}
fn make_int64_batch() -> RecordBatch {
let array: ArrayRef = Arc::new(Int64Array::from(vec![
Some(1),
Some(2),
Some(3),
Some(4),
Some(5),
]));
RecordBatch::try_new(
Arc::new(arrow::datatypes::Schema::new(vec![
arrow::datatypes::Field::new("col", Int64, false),
])),
vec![array],
)
.unwrap()
}
fn make_f64_batch() -> RecordBatch {
let array: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0]));
RecordBatch::try_new(
Arc::new(arrow::datatypes::Schema::new(vec![
arrow::datatypes::Field::new("col", Float64, false),
])),
vec![array],
)
.unwrap()
}
fn make_string_batch() -> RecordBatch {
let array: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d", "e"]));
RecordBatch::try_new(
Arc::new(arrow::datatypes::Schema::new(vec![
arrow::datatypes::Field::new("col", Utf8, false),
])),
vec![array],
)
.unwrap()
}
fn make_dict_batch() -> RecordBatch {
let keys = Int32Array::from(vec![0, 1, 2, 3, 4]);
let values = StringArray::from(vec!["a", "b", "c", "d", "e"]);
let array: ArrayRef = Arc::new(DictionaryArray::try_new(keys, Arc::new(values)).unwrap());
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new(
"col",
Dictionary(Box::new(Int32), Box::new(Utf8)),
false,
)])),
vec![array],
)
.unwrap()
}
fn criterion_benchmark(c: &mut Criterion) {
let row_groups = 100;
use TestTypes::*;
let types = vec![Int64, UInt64, F64, String, Dictionary];
let data_page_row_count_limits = vec![None, Some(1)];
for dtype in types {
for data_page_row_count_limit in &data_page_row_count_limits {
let file = create_parquet_file(dtype.clone(), row_groups, data_page_row_count_limit);
let file = file.reopen().unwrap();
let options = ArrowReaderOptions::new().with_page_index(true);
let reader = ArrowReaderBuilder::try_new_with_options(file, options).unwrap();
let metadata = reader.metadata();
let row_groups = metadata.row_groups();
let row_group_indices: Vec<_> = (0..row_groups.len()).collect();
let statistic_type = if data_page_row_count_limit.is_some() {
"data page"
} else {
"row group"
};
let mut group = c.benchmark_group(format!(
"Extract {} statistics for {}",
statistic_type,
dtype.clone()
));
group.bench_function(BenchmarkId::new("extract_statistics", dtype.clone()), |b| {
b.iter(|| {
let converter = StatisticsConverter::try_new(
"col",
reader.schema(),
reader.parquet_schema(),
)
.unwrap();
if data_page_row_count_limit.is_some() {
let column_page_index = reader
.metadata()
.column_index()
.expect("File should have column page indices");
let column_offset_index = reader
.metadata()
.offset_index()
.expect("File should have column offset indices");
let _ = converter.data_page_mins(
column_page_index,
column_offset_index,
&row_group_indices,
);
let _ = converter.data_page_maxes(
column_page_index,
column_offset_index,
&row_group_indices,
);
let _ = converter.data_page_null_counts(
column_page_index,
column_offset_index,
&row_group_indices,
);
let _ = converter.data_page_row_counts(
column_offset_index,
row_groups,
&row_group_indices,
);
} else {
let _ = converter.row_group_mins(row_groups.iter()).unwrap();
let _ = converter.row_group_maxes(row_groups.iter()).unwrap();
let _ = converter.row_group_null_counts(row_groups.iter()).unwrap();
let _ = converter.row_group_row_counts(row_groups.iter()).unwrap();
}
})
});
group.finish();
}
}
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);