sdks/python/apache_beam/metrics/cells.py (571 lines of code) (raw):

# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This file contains metric cell classes. A metric cell is used to accumulate in-memory changes to a metric. It represents a specific metric in a single context. """ # pytype: skip-file import copy import logging import threading import time from datetime import datetime from datetime import timezone from typing import Iterable from typing import Optional from typing import Set from apache_beam.portability.api import metrics_pb2 try: import cython except ImportError: class fake_cython: compiled = False globals()['cython'] = fake_cython __all__ = [ 'MetricCell', 'MetricCellFactory', 'DistributionResult', 'GaugeResult' ] _LOGGER = logging.getLogger(__name__) class MetricCell(object): """For internal use only; no backwards-compatibility guarantees. Accumulates in-memory changes to a metric. A MetricCell represents a specific metric in a single context and bundle. All subclasses must be thread safe, as these are used in the pipeline runners, and may be subject to parallel/concurrent updates. Cells should only be used directly within a runner. """ def __init__(self): self._lock = threading.Lock() self._start_time = None def update(self, value): raise NotImplementedError def get_cumulative(self): raise NotImplementedError def to_runner_api_monitoring_info(self, name, transform_id): if not self._start_time: self._start_time = datetime.now(timezone.utc) mi = self.to_runner_api_monitoring_info_impl(name, transform_id) mi.start_time.FromDatetime(self._start_time) return mi def to_runner_api_monitoring_info_impl(self, name, transform_id): raise NotImplementedError def reset(self): # type: () -> None raise NotImplementedError def __reduce__(self): raise NotImplementedError class MetricCellFactory(object): def __call__(self): # type: () -> MetricCell raise NotImplementedError class CounterCell(MetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value and delta of a counter metric. Each cell tracks the state of an integer metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, cells are aggregated by the runner. This class is thread safe. """ def __init__(self, *args): super().__init__(*args) self.value = 0 def reset(self): # type: () -> None self.value = 0 def combine(self, other): # type: (CounterCell) -> CounterCell result = CounterCell() result.inc(self.value + other.value) return result def inc(self, n=1): self.update(n) def dec(self, n=1): self.update(-n) def update(self, value): # type: (int) -> None if cython.compiled: ivalue = value # Since We hold the GIL, no need for another lock. # And because the C threads won't preempt and interleave # each other. # Assuming there is no code trying to access the counters # directly by circumventing the GIL. self.value += ivalue else: with self._lock: self.value += value def get_cumulative(self): # type: () -> int with self._lock: return self.value def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos if not name.urn: # User counter case. return monitoring_infos.int64_user_counter( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id) else: # Arbitrary URN case. return monitoring_infos.int64_counter( name.urn, self.get_cumulative(), labels=name.labels) class DistributionCell(MetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value and delta for a distribution metric. Each cell tracks the state of a metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, that is later aggregated. This class is thread safe. """ def __init__(self, *args): super().__init__(*args) self.data = DistributionData.identity_element() def reset(self): # type: () -> None self.data = DistributionData.identity_element() def combine(self, other): # type: (DistributionCell) -> DistributionCell result = DistributionCell() result.data = self.data.combine(other.data) return result def update(self, value): if cython.compiled: # We will hold the GIL throughout the entire _update. self._update(value) else: with self._lock: self._update(value) def _update(self, value): if cython.compiled: ivalue = value else: ivalue = int(value) self.data.count = self.data.count + 1 self.data.sum = self.data.sum + ivalue if ivalue < self.data.min: self.data.min = ivalue if ivalue > self.data.max: self.data.max = ivalue def get_cumulative(self): # type: () -> DistributionData with self._lock: return self.data.get_cumulative() def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos return monitoring_infos.int64_user_distribution( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id) class AbstractMetricCell(MetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value and delta for a metric with a data class. This class is thread safe. """ def __init__(self, data_class): super().__init__() self.data_class = data_class self.data = self.data_class.identity_element() def reset(self): self.data = self.data_class.identity_element() def combine(self, other: 'AbstractMetricCell') -> 'AbstractMetricCell': result = type(self)() # type: ignore[call-arg] result.data = self.data.combine(other.data) return result def set(self, value): with self._lock: self._update_locked(value) def update(self, value): with self._lock: self._update_locked(value) def _update_locked(self, value): raise NotImplementedError(type(self)) def get_cumulative(self): with self._lock: return self.data.get_cumulative() def to_runner_api_monitoring_info_impl(self, name, transform_id): raise NotImplementedError(type(self)) class GaugeCell(AbstractMetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value and delta for a gauge metric. Each cell tracks the state of a metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, that is later aggregated. This class is thread safe. """ def __init__(self): super().__init__(GaugeData) def _update_locked(self, value): # Set the value directly without checking timestamp, because # this value is naturally the latest value. self.data.value = int(value) self.data.timestamp = time.time() def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos return monitoring_infos.int64_user_gauge( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id) class StringSetCell(AbstractMetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value for a StringSet metric. Each cell tracks the state of a metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, that is later aggregated. This class is thread safe. """ def __init__(self): super().__init__(StringSetData) def add(self, value): self.update(value) def _update_locked(self, value): self.data.add(value) def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos return monitoring_infos.user_set_string( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id) class BoundedTrieCell(AbstractMetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value for a BoundedTrie metric. Each cell tracks the state of a metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, that is later aggregated. This class is thread safe. """ def __init__(self): super().__init__(BoundedTrieData) def add(self, value): self.update(value) def _update_locked(self, value): self.data.add(value) def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos return monitoring_infos.user_bounded_trie( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id) class DistributionResult(object): """The result of a Distribution metric.""" def __init__(self, data): # type: (DistributionData) -> None self.data = data def __eq__(self, other): # type: (object) -> bool if isinstance(other, DistributionResult): return self.data == other.data else: return False def __hash__(self): # type: () -> int return hash(self.data) def __repr__(self): # type: () -> str return ( 'DistributionResult(sum={}, count={}, min={}, max={}, ' 'mean={})'.format(self.sum, self.count, self.min, self.max, self.mean)) @property def max(self): # type: () -> Optional[int] return self.data.max if self.data.count else None @property def min(self): # type: () -> Optional[int] return self.data.min if self.data.count else None @property def count(self): # type: () -> Optional[int] return self.data.count @property def sum(self): # type: () -> Optional[int] return self.data.sum @property def mean(self): # type: () -> Optional[float] """Returns the float mean of the distribution. If the distribution contains no elements, it returns None. """ if self.data.count == 0: return None return self.data.sum / self.data.count class GaugeResult(object): def __init__(self, data): # type: (GaugeData) -> None self.data = data def __eq__(self, other): # type: (object) -> bool if isinstance(other, GaugeResult): return self.data == other.data else: return False def __hash__(self): # type: () -> int return hash(self.data) def __repr__(self): return '<GaugeResult(value={}, timestamp={})>'.format( self.value, self.timestamp) @property def value(self): # type: () -> Optional[int] return self.data.value @property def timestamp(self): # type: () -> Optional[int] return self.data.timestamp class GaugeData(object): """For internal use only; no backwards-compatibility guarantees. The data structure that holds data about a gauge metric. Gauge metrics are restricted to integers only. This object is not thread safe, so it's not supposed to be modified by other than the GaugeCell that contains it. """ def __init__(self, value, timestamp=None): # type: (Optional[int], Optional[int]) -> None self.value = value self.timestamp = timestamp if timestamp is not None else 0 def __eq__(self, other): # type: (object) -> bool if isinstance(other, GaugeData): return self.value == other.value and self.timestamp == other.timestamp else: return False def __hash__(self): # type: () -> int return hash((self.value, self.timestamp)) def __repr__(self): # type: () -> str return '<GaugeData(value={}, timestamp={})>'.format( self.value, self.timestamp) def get_cumulative(self): # type: () -> GaugeData return GaugeData(self.value, timestamp=self.timestamp) def get_result(self): # type: () -> GaugeResult return GaugeResult(self.get_cumulative()) def combine(self, other): # type: (Optional[GaugeData]) -> GaugeData if other is None: return self if other.timestamp > self.timestamp: return other else: return self @staticmethod def singleton(value, timestamp=None): # type: (Optional[int], Optional[int]) -> GaugeData return GaugeData(value, timestamp=timestamp) @staticmethod def identity_element(): # type: () -> GaugeData return GaugeData(0, timestamp=0) class DistributionData(object): """For internal use only; no backwards-compatibility guarantees. The data structure that holds data about a distribution metric. Distribution metrics are restricted to distributions of integers only. This object is not thread safe, so it's not supposed to be modified by other than the DistributionCell that contains it. """ def __init__(self, sum, count, min, max): # type: (int, int, int, int) -> None if count: self.sum = sum self.count = count self.min = min self.max = max else: self.sum = self.count = 0 self.min = 2**63 - 1 # Avoid Wimplicitly-unsigned-literal caused by -2**63. self.max = -self.min - 1 def __eq__(self, other): # type: (object) -> bool if isinstance(other, DistributionData): return ( self.sum == other.sum and self.count == other.count and self.min == other.min and self.max == other.max) else: return False def __hash__(self): # type: () -> int return hash((self.sum, self.count, self.min, self.max)) def __repr__(self): # type: () -> str return 'DistributionData(sum={}, count={}, min={}, max={})'.format( self.sum, self.count, self.min, self.max) def get_cumulative(self): # type: () -> DistributionData return DistributionData(self.sum, self.count, self.min, self.max) def get_result(self) -> DistributionResult: return DistributionResult(self.get_cumulative()) def combine(self, other): # type: (Optional[DistributionData]) -> DistributionData if other is None: return self return DistributionData( self.sum + other.sum, self.count + other.count, self.min if self.min < other.min else other.min, self.max if self.max > other.max else other.max) @staticmethod def singleton(value): # type: (int) -> DistributionData return DistributionData(value, 1, value, value) @staticmethod def identity_element(): # type: () -> DistributionData return DistributionData(0, 0, 2**63 - 1, -2**63) class StringSetData(object): """For internal use only; no backwards-compatibility guarantees. The data structure that holds data about a StringSet metric. StringSet metrics are restricted to set of strings only. This object is not thread safe, so it's not supposed to be modified by other than the StringSetCell that contains it. The summation of all string length for a StringSetData cannot exceed 1 MB. Further addition of elements are dropped. """ _STRING_SET_SIZE_LIMIT = 1_000_000 def __init__(self, string_set: Optional[Set] = None, string_size: int = 0): self.string_set = string_set or set() if not string_size: string_size = 0 for s in self.string_set: string_size += len(s) self.string_size = string_size def __eq__(self, other: object) -> bool: if isinstance(other, StringSetData): return ( self.string_size == other.string_size and self.string_set == other.string_set) else: return False def __hash__(self) -> int: return hash(self.string_set) def __repr__(self) -> str: return 'StringSetData{}:{}'.format(self.string_set, self.string_size) def get_cumulative(self) -> "StringSetData": return StringSetData(set(self.string_set), self.string_size) def get_result(self) -> Set[str]: return set(self.string_set) def add(self, *strings): """ Add strings into this StringSetData and return the result StringSetData. Reuse the original StringSetData's set. """ self.string_size = self.add_until_capacity( self.string_set, self.string_size, strings) return self def combine(self, other: "StringSetData") -> "StringSetData": """ Combines this StringSetData with other, both original StringSetData are left intact. """ if other is None: return self if not other.string_set: return self elif not self.string_set: return other combined = set(self.string_set) string_size = self.add_until_capacity( combined, self.string_size, other.string_set) return StringSetData(combined, string_size) @classmethod def add_until_capacity( cls, combined: set, current_size: int, others: Iterable[str]): """ Add strings into set until reach capacity. Return the all string size of added set. """ if current_size > cls._STRING_SET_SIZE_LIMIT: return current_size for string in others: if string not in combined: combined.add(string) current_size += len(string) if current_size > cls._STRING_SET_SIZE_LIMIT: _LOGGER.warning( "StringSet metrics reaches capacity. Further incoming elements " "won't be recorded. Current size: %d, last element size: %d.", current_size, len(string)) break return current_size @staticmethod def singleton(value: str) -> "StringSetData": return StringSetData({value}) @staticmethod def identity_element() -> "StringSetData": return StringSetData() class _BoundedTrieNode(object): def __init__(self): # invariant: size = len(self.flattened()) = min(1, sum(size of children)) self._size = 1 self._children: Optional[dict[str, '_BoundedTrieNode']] = {} self._truncated = False def to_proto(self) -> metrics_pb2.BoundedTrieNode: return metrics_pb2.BoundedTrieNode( truncated=self._truncated, children={ name: child.to_proto() for name, child in self._children.items() } if self._children else None) @staticmethod def from_proto(proto: metrics_pb2.BoundedTrieNode) -> '_BoundedTrieNode': node = _BoundedTrieNode() if proto.truncated: node._truncated = True node._children = None else: node._children = { name: _BoundedTrieNode.from_proto(child) for name, child in proto.children.items() } node._size = max(1, sum(child._size for child in node._children.values())) return node def size(self): return self._size def contains(self, segments): if self._truncated or not segments: return True head, *tail = segments return head in self._children and self._children[head].contains(tail) def add(self, segments) -> int: if self._truncated or not segments: return 0 head, *tail = segments was_empty = not self._children child = self._children.get(head, None) # type: ignore[union-attr] if child is None: child = self._children[head] = _BoundedTrieNode() # type: ignore[index] delta = 0 if was_empty else 1 else: delta = 0 if tail: delta += child.add(tail) self._size += delta return delta def add_all(self, segments_iter): return sum(self.add(segments) for segments in segments_iter) def trim(self) -> int: if not self._children: return 0 max_child = max(self._children.values(), key=lambda child: child._size) if max_child._size == 1: delta = 1 - self._size self._truncated = True self._children = None else: delta = max_child.trim() self._size += delta return delta def merge(self, other: '_BoundedTrieNode') -> int: if self._truncated: delta = 0 elif other._truncated: delta = 1 - self._size self._truncated = True self._children = None elif not other._children: delta = 0 elif not self._children: self._children = other._children delta = other._size - self._size else: delta = 0 other_child: '_BoundedTrieNode' self_child: Optional['_BoundedTrieNode'] for prefix, other_child in other._children.items(): self_child = self._children.get(prefix, None) if self_child is None: self._children[prefix] = other_child delta += other_child._size else: delta += self_child.merge(other_child) self._size += delta return delta def flattened(self): if self._truncated: yield (True, ) elif not self._children: yield (False, ) else: for prefix, child in sorted(self._children.items()): for flattened in child.flattened(): yield (prefix, ) + flattened def __hash__(self): return self._truncated or hash(sorted(self._children.items())) def __eq__(self, other): if isinstance(other, _BoundedTrieNode): return ( self._truncated == other._truncated and self._children == other._children) else: return False def __repr__(self): return repr(set(''.join(str(s) for s in t) for t in self.flattened())) class BoundedTrieData(object): _DEFAULT_BOUND = 100 def __init__(self, *, root=None, singleton=None, bound=_DEFAULT_BOUND): self._singleton = singleton self._root = root self._bound = bound assert singleton is None or root is None def size(self): if self._singleton is not None: return 1 elif self._root is not None: return self._root.size() else: return 0 def contains(self, value): if self._singleton is not None: return tuple(value) == self._singleton elif self._root is not None: return self._root.contains(value) else: return False def flattened(self): return self.as_trie().flattened() def to_proto(self) -> metrics_pb2.BoundedTrie: return metrics_pb2.BoundedTrie( bound=self._bound, singleton=self._singleton if self._singleton else None, root=self._root.to_proto() if self._root else None) @staticmethod def from_proto(proto: metrics_pb2.BoundedTrie) -> 'BoundedTrieData': return BoundedTrieData( bound=proto.bound, singleton=tuple(proto.singleton) if proto.singleton else None, root=( _BoundedTrieNode.from_proto(proto.root) if proto.HasField('root') else None)) def as_trie(self): if self._root is not None: return self._root else: root = _BoundedTrieNode() if self._singleton is not None: root.add(self._singleton) return root def __eq__(self, other: object) -> bool: if isinstance(other, BoundedTrieData): return self.as_trie() == other.as_trie() else: return False def __hash__(self) -> int: return hash(self.as_trie()) def __repr__(self) -> str: return 'BoundedTrieData({})'.format(self.as_trie()) def get_cumulative(self) -> "BoundedTrieData": return copy.deepcopy(self) def get_result(self) -> Set[tuple]: if self._root is None: if self._singleton is None: return set() else: return set([self._singleton + (False, )]) else: return set(self._root.flattened()) def add(self, segments): if self._root is None and self._singleton is None: self._singleton = segments elif self._singleton is not None and self._singleton == segments: # Optimize for the common case of re-adding the same value. return else: if self._root is None: self._root = self.as_trie() self._singleton = None self._root.add(segments) if self._root._size > self._bound: self._root.trim() def combine(self, other: "BoundedTrieData") -> "BoundedTrieData": if self._root is None and self._singleton is None: return other elif other._root is None and other._singleton is None: return self else: if self._root is None and other._root is not None: self, other = other, self combined = copy.deepcopy(self.as_trie()) if other._root is not None: combined.merge(other._root) else: combined.add(other._singleton) self._bound = min(self._bound, other._bound) while combined._size > self._bound: combined.trim() return BoundedTrieData(root=combined) @staticmethod def singleton(value: str) -> "BoundedTrieData": s = BoundedTrieData() s.add(value) return s @staticmethod def identity_element() -> "BoundedTrieData": return BoundedTrieData()