sdks/python/setup.py (440 lines of code) (raw):
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Apache Beam SDK for Python setup file."""
import glob
import logging
import os
import shutil
import subprocess
import sys
import warnings
# Pylint and isort disagree here.
# pylint: disable=ungrouped-imports
from importlib.metadata import PackageNotFoundError
from importlib.metadata import distribution
from pathlib import Path
# pylint: disable=ungrouped-imports
import setuptools
from pkg_resources import normalize_path
from pkg_resources import parse_version
from pkg_resources import to_filename
from setuptools import Command
# pylint: disable=wrong-import-order
# It is recommended to import setuptools prior to importing distutils to avoid
# using legacy behavior from distutils.
# https://setuptools.readthedocs.io/en/latest/history.html#v48-0-0
from distutils.errors import DistutilsError # isort:skip
class mypy(Command):
user_options = []
def initialize_options(self):
"""Abstract method that is required to be overwritten"""
def finalize_options(self):
"""Abstract method that is required to be overwritten"""
def get_project_path(self):
self.run_command('egg_info')
# Build extensions in-place
self.reinitialize_command('build_ext', inplace=1)
self.run_command('build_ext')
ei_cmd = self.get_finalized_command("egg_info")
project_path = normalize_path(ei_cmd.egg_base)
return os.path.join(project_path, to_filename(ei_cmd.egg_name))
def run(self):
args = ['mypy', self.get_project_path()]
result = subprocess.call(args)
if result != 0:
raise DistutilsError("mypy exited with status %d" % result)
def get_version():
global_names = {}
exec( # pylint: disable=exec-used
open(os.path.join(
os.path.dirname(os.path.abspath(__file__)),
'apache_beam/version.py')
).read(),
global_names
)
return global_names['__version__']
PACKAGE_NAME = 'apache-beam'
PACKAGE_VERSION = get_version()
PACKAGE_DESCRIPTION = 'Apache Beam SDK for Python'
PACKAGE_URL = 'https://beam.apache.org'
PACKAGE_DOWNLOAD_URL = 'https://pypi.python.org/pypi/apache-beam'
PACKAGE_AUTHOR = 'Apache Software Foundation'
PACKAGE_EMAIL = 'dev@beam.apache.org'
PACKAGE_KEYWORDS = 'apache beam'
PACKAGE_LONG_DESCRIPTION = '''
Apache Beam is a unified programming model for both batch and streaming
data processing, enabling efficient execution across diverse distributed
execution engines and providing extensibility points for connecting to
different technologies and user communities.
'''
RECOMMENDED_MIN_PIP_VERSION = '19.3.0'
try:
_PIP_VERSION = distribution('pip').version
if parse_version(_PIP_VERSION) < parse_version(RECOMMENDED_MIN_PIP_VERSION):
warnings.warn(
"You are using version {0} of pip. " \
"However, the recommended min version is {1}.".format(
_PIP_VERSION, RECOMMENDED_MIN_PIP_VERSION
)
)
except PackageNotFoundError:
# Do nothing if pip is not found. This can happen when using `Poetry` or
# `pipenv` package managers.
pass
REQUIRED_CYTHON_VERSION = '3.0.0'
try:
_CYTHON_VERSION = distribution('cython').version
if parse_version(_CYTHON_VERSION) < parse_version(REQUIRED_CYTHON_VERSION):
warnings.warn(
"You are using version {0} of cython. " \
"However, version {1} is recommended.".format(
_CYTHON_VERSION, REQUIRED_CYTHON_VERSION
)
)
except PackageNotFoundError:
# do nothing if Cython is not installed
pass
try:
# pylint: disable=wrong-import-position
from Cython.Build import cythonize as cythonize0
def cythonize(*args, **kwargs):
import numpy
extensions = cythonize0(*args, **kwargs)
for e in extensions:
e.include_dirs.append(numpy.get_include())
return extensions
except ImportError:
cythonize = lambda *args, **kwargs: []
# [BEAM-8181] pyarrow cannot be installed on 32-bit Windows platforms.
if sys.platform == 'win32' and sys.maxsize <= 2**32:
pyarrow_dependency = ['']
else:
pyarrow_dependency = [
'pyarrow>=3.0.0,<17.0.0',
# NOTE(https://github.com/apache/beam/issues/29392): We can remove this
# once Beam increases the pyarrow lower bound to a version that fixes CVE.
'pyarrow-hotfix<1'
]
# Exclude pandas<=1.4.2 since it doesn't work with numpy 1.24.x.
# Exclude 1.5.0 and 1.5.1 because of
# https://github.com/pandas-dev/pandas/issues/45725
# must update the below "docs" and "test" for extras_require
dataframe_dependency = [
'pandas>=1.4.3,!=1.5.0,!=1.5.1,<2.3',
]
def find_by_ext(root_dir, ext):
for root, _, files in os.walk(root_dir):
for file in files:
if file.endswith(ext):
yield os.path.realpath(os.path.join(root, file))
# We must generate protos after setup_requires are installed.
def generate_protos_first():
try:
# Pyproject toml build happens in isolated environemnts. In those envs,
# gen_protos is unable to get imported. so we run a subprocess call.
cwd = os.path.abspath(os.path.dirname(__file__))
# when pip install <>.tar.gz gets called, if gen_protos.py is not available
# in the sdist,then the proto files would have already been generated. So we
# skip proto generation in that case.
if not os.path.exists(os.path.join(cwd, 'gen_protos.py')):
# make sure we already generated protos
pb2_files = list(
find_by_ext(
os.path.join(cwd, 'apache_beam', 'portability', 'api'),
'_pb2.py'))
if not pb2_files:
raise RuntimeError(
'protobuf files are not generated. '
'Please generate pb2 files')
warnings.warn('Skipping proto generation as they are already generated.')
return
out = subprocess.run(
[sys.executable, os.path.join(cwd, 'gen_protos.py'), '--no-force'],
capture_output=True,
check=True)
print(out.stdout)
except subprocess.CalledProcessError as err:
raise RuntimeError('Could not generate protos due to error: %s', err.stderr)
def copy_tests_from_docs():
python_root = os.path.abspath(os.path.dirname(__file__))
docs_src = os.path.normpath(
os.path.join(
python_root, '../../website/www/site/content/en/documentation/sdks'))
docs_dest = os.path.normpath(
os.path.join(python_root, 'apache_beam/yaml/docs'))
if os.path.exists(docs_src):
shutil.rmtree(docs_dest, ignore_errors=True)
os.mkdir(docs_dest)
for path in glob.glob(os.path.join(docs_src, 'yaml*.md')):
shutil.copy(path, docs_dest)
else:
warnings.warn(
f'Could not locate yaml docs source directory {docs_src}. '
f'Skipping copying tests from docs.')
def generate_external_transform_wrappers():
try:
sdk_dir = os.path.abspath(os.path.dirname(__file__))
script_exists = os.path.exists(
os.path.join(sdk_dir, 'gen_xlang_wrappers.py'))
config_exists = os.path.exists(
os.path.join(os.path.dirname(sdk_dir),
'standard_external_transforms.yaml'))
# we need both the script and the standard transforms config file.
# at build time, we don't have access to apache_beam to discover and
# retrieve external transforms, so the config file has to already exist
if not script_exists or not config_exists:
generated_transforms_dir = os.path.join(
sdk_dir, 'apache_beam', 'transforms', 'xlang')
# if exists, this directory will have at least its __init__.py file
if (not os.path.exists(generated_transforms_dir) or
len(os.listdir(generated_transforms_dir)) <= 1):
message = 'External transform wrappers have not been generated '
if not script_exists:
message += 'and the generation script `gen_xlang_wrappers.py`'
if not config_exists:
message += 'and the standard external transforms config'
message += ' could not be found'
raise RuntimeError(message)
else:
logging.info(
'Skipping external transform wrapper generation as they '
'are already generated.')
return
subprocess.run([
sys.executable,
os.path.join(sdk_dir, 'gen_xlang_wrappers.py'),
'--cleanup',
'--transforms-config-source',
os.path.join(os.path.dirname(sdk_dir),
'standard_external_transforms.yaml')
], capture_output=True, check=True)
except subprocess.CalledProcessError as err:
raise RuntimeError(
'Could not generate external transform wrappers due to '
'error: %s', err.stderr)
def get_portability_package_data():
files = []
portability_dir = Path(__file__).parent / 'apache_beam' / \
'portability' / 'api'
for ext in ['*.pyi', '*.yaml']:
files.extend(
str(p.relative_to(portability_dir.parent.parent))
for p in portability_dir.rglob(ext))
return files
python_requires = '>=3.9'
if sys.version_info.major == 3 and sys.version_info.minor >= 13:
warnings.warn(
'This version of Apache Beam has not been sufficiently tested on '
'Python %s.%s. You may encounter bugs or missing features.' %
(sys.version_info.major, sys.version_info.minor))
if __name__ == '__main__':
# In order to find the tree of proto packages, the directory
# structure must exist before the call to setuptools.find_packages()
# executes below.
generate_protos_first()
generate_external_transform_wrappers()
# These data files live elsewhere in the full Beam repository.
copy_tests_from_docs()
# generate cythonize extensions only if we are building a wheel or
# building an extension or running in editable mode.
cythonize_cmds = ('bdist_wheel', 'build_ext', 'editable_wheel')
if any(cmd in sys.argv for cmd in cythonize_cmds):
extensions = cythonize([
'apache_beam/**/*.pyx',
'apache_beam/coders/coder_impl.py',
'apache_beam/metrics/cells.py',
'apache_beam/metrics/execution.py',
'apache_beam/runners/common.py',
'apache_beam/runners/worker/logger.py',
'apache_beam/runners/worker/opcounters.py',
'apache_beam/runners/worker/operations.py',
'apache_beam/transforms/cy_combiners.py',
'apache_beam/transforms/stats.py',
'apache_beam/utils/counters.py',
'apache_beam/utils/windowed_value.py',
])
else:
extensions = []
# Keep all dependencies inlined in the setup call, otherwise Dependabot won't
# be able to parse it.
setuptools.setup(
name=PACKAGE_NAME,
version=PACKAGE_VERSION,
description=PACKAGE_DESCRIPTION,
long_description=PACKAGE_LONG_DESCRIPTION,
url=PACKAGE_URL,
download_url=PACKAGE_DOWNLOAD_URL,
author=PACKAGE_AUTHOR,
author_email=PACKAGE_EMAIL,
packages=setuptools.find_packages(),
package_data={
'apache_beam': [
'*/*.pyx',
'*/*/*.pyx',
'*/*.pxd',
'*/*/*.pxd',
'*/*.h',
'*/*/*.h',
'testing/data/*.yaml',
'yaml/*.yaml',
'yaml/docs/*.md',
*get_portability_package_data()
]
},
ext_modules=extensions,
install_requires=[
'crcmod>=1.7,<2.0',
'orjson>=3.9.7,<4',
# Dill doesn't have forwards-compatibility guarantees within minor
# version. Pickles created with a new version of dill may not unpickle
# using older version of dill. It is best to use the same version of
# dill on client and server, therefore list of allowed versions is
# very narrow. See: https://github.com/uqfoundation/dill/issues/341.
'dill>=0.3.1.1,<0.3.2',
'fastavro>=0.23.6,<2',
'fasteners>=0.3,<1.0',
# TODO(https://github.com/grpc/grpc/issues/37710): Unpin grpc
'grpcio>=1.33.1,<2,!=1.48.0,!=1.59.*,!=1.60.*,!=1.61.*,!=1.62.0,!=1.62.1,<1.66.0', # pylint: disable=line-too-long
'hdfs>=2.1.0,<3.0.0',
'httplib2>=0.8,<0.23.0',
'jsonschema>=4.0.0,<5.0.0',
'jsonpickle>=3.0.0,<4.0.0',
# numpy can have breaking changes in minor versions.
# Use a strict upper bound.
'numpy>=1.14.3,<2.3.0', # Update pyproject.toml as well.
'objsize>=0.6.1,<0.8.0',
'packaging>=22.0',
'pymongo>=3.8.0,<5.0.0',
'proto-plus>=1.7.1,<2',
# 1. Use a tighter upper bound in protobuf dependency to make sure
# the minor version at job submission
# does not exceed the minor version at runtime.
# To avoid depending on an old dependency, update the minor version on
# every Beam release, see: https://github.com/apache/beam/issues/25590
# 2. Allow latest protobuf 3 version as a courtesy to some customers.
#
# 3. Exclude protobuf 4 versions that leak memory, see:
# https://github.com/apache/beam/issues/28246
'protobuf>=3.20.3,<6.0.0.dev0,!=4.0.*,!=4.21.*,!=4.22.0,!=4.23.*,!=4.24.*', # pylint: disable=line-too-long
'pydot>=1.2.0,<2',
'python-dateutil>=2.8.0,<3',
'pytz>=2018.3',
'redis>=5.0.0,<6',
'regex>=2020.6.8',
'requests>=2.24.0,<3.0.0',
'sortedcontainers>=2.4.0',
'typing-extensions>=3.7.0',
'zstandard>=0.18.0,<1',
'pyyaml>=3.12,<7.0.0',
# Dynamic dependencies must be specified in a separate list, otherwise
# Dependabot won't be able to parse the main list. Any dynamic
# dependencies will not receive updates from Dependabot.
] + pyarrow_dependency,
python_requires=python_requires,
# BEAM-8840: Do NOT use tests_require or setup_requires.
extras_require={
'docs': [
'jinja2>=3.0,<3.2',
'Sphinx>=7.0.0,<8.0',
'docstring-parser>=0.15,<1.0',
'docutils>=0.18.1',
'markdown',
'pandas<2.3.0',
'openai',
'virtualenv-clone>=0.5,<1.0',
],
'test': [
'docstring-parser>=0.15,<1.0',
'freezegun>=0.3.12',
'jinja2>=3.0,<3.2',
'joblib>=1.0.1',
'mock>=1.0.1,<6.0.0',
'pandas<2.3.0',
'parameterized>=0.7.1,<0.10.0',
'pyhamcrest>=1.9,!=1.10.0,<3.0.0',
'requests_mock>=1.7,<2.0',
'tenacity>=8.0.0,<9',
'pytest>=7.1.2,<8.0',
'pytest-xdist>=2.5.0,<4',
'pytest-timeout>=2.1.0,<3',
'scikit-learn>=0.20.0',
'setuptools',
'sqlalchemy>=1.3,<3.0',
'psycopg2-binary>=2.8.5,<3.0.0,!=2.9.10',
'testcontainers[mysql]>=3.0.3,<4.0.0',
'cryptography>=41.0.2',
'hypothesis>5.0.0,<7.0.0',
'virtualenv-clone>=0.5,<1.0',
],
'gcp': [
'cachetools>=3.1.0,<6',
'google-api-core>=2.0.0,<3',
'google-apitools>=0.5.31,<0.5.32',
# NOTE: Maintainers, please do not require google-auth>=2.x.x
# Until this issue is closed
# https://github.com/googleapis/google-cloud-python/issues/10566
'google-auth>=1.18.0,<3',
'google-auth-httplib2>=0.1.0,<0.3.0',
'google-cloud-datastore>=2.0.0,<3',
'google-cloud-pubsub>=2.1.0,<3',
'google-cloud-pubsublite>=1.2.0,<2',
'google-cloud-storage>=2.18.2,<3',
# GCP packages required by tests
'google-cloud-bigquery>=2.0.0,<4',
'google-cloud-bigquery-storage>=2.6.3,<3',
'google-cloud-core>=2.0.0,<3',
'google-cloud-bigtable>=2.19.0,<3',
'google-cloud-spanner>=3.0.0,<4',
# GCP Packages required by ML functionality
'google-cloud-dlp>=3.0.0,<4',
'google-cloud-language>=2.0,<3',
'google-cloud-videointelligence>=2.0,<3',
'google-cloud-vision>=2,<4',
'google-cloud-recommendations-ai>=0.1.0,<0.11.0',
'google-cloud-aiplatform>=1.26.0, < 2.0',
# Authentication for Google Artifact Registry when using
# --extra-index-url or --index-url in requirements.txt in
# Dataflow, which allows installing python packages from private
# Python repositories in GAR.
'keyrings.google-artifactregistry-auth'
],
'interactive': [
'facets-overview>=1.1.0,<2',
'google-cloud-dataproc>=5.0.0,<6',
'ipython>=8,<9',
'ipykernel>=6,<7',
'ipywidgets>=8,<9',
# Skip version 6.1.13 due to
# https://github.com/jupyter/jupyter_client/issues/637
'jupyter-client>=6.1.11,!=6.1.13,<8.2.1',
'timeloop>=1.0.2,<2',
'nbformat>=5.0.5,<6',
'nbconvert>=6.2.0,<8',
] + dataframe_dependency,
'interactive_test': [
# headless chrome based integration tests
'needle>=0.5.0,<1',
'chromedriver-binary>=117,<118',
# use a fixed major version of PIL for different python versions
'pillow>=7.1.1,<10',
# urllib 2.x is a breaking change for the headless chrome tests
'urllib3<2,>=1.21.1'
],
# Optional dependencies to unit-test ML functionality.
# We don't expect users to install this extra. Users should install
# necessary dependencies individually, or we should create targeted
# extras. Keeping the bounds open as much as possible so that we
# can find out early when Beam doesn't work with new versions.
'ml_test': [
'datatable',
'embeddings',
'langchain',
'onnxruntime',
'sentence-transformers',
'skl2onnx',
'pillow',
'pyod',
'tensorflow',
'tensorflow-hub',
'tensorflow-transform',
'tf2onnx',
'torch',
'transformers',
# Comment out xgboost as it is breaking presubmit python ml
# tests due to tag check introduced since pip 24.2
# https://github.com/apache/beam/issues/31285
# 'xgboost<2.0', # https://github.com/apache/beam/issues/31252
],
'p312_ml_test': [
'datatable',
'embeddings',
'onnxruntime',
'langchain',
'sentence-transformers',
'skl2onnx',
'pillow',
'pyod',
'tensorflow',
'tensorflow-hub',
'tf2onnx',
'torch',
'transformers',
],
'aws': ['boto3>=1.9,<2'],
'azure': [
'azure-storage-blob>=12.3.2,<13',
'azure-core>=1.7.0,<2',
'azure-identity>=1.12.0,<2',
],
'dataframe': dataframe_dependency,
'dask': [
'distributed >= 2024.4.2',
'dask >= 2024.4.2',
# For development, 'distributed >= 2023.12.1' should work with
# the above dask PR, however it can't be installed as part of
# a single `pip` call, since distributed releases are pinned to
# specific dask releases. As a workaround, distributed can be
# installed first, and then `.[dask]` installed second, with the
# `--update` / `-U` flag to replace the dask release brought in
# by distributed.
],
'yaml': [
'docstring-parser>=0.15,<1.0',
'jinja2>=3.0,<3.2',
'virtualenv-clone>=0.5,<1.0',
# https://github.com/PiotrDabkowski/Js2Py/issues/317
'js2py>=0.74,<1; python_version<"3.12"',
] + dataframe_dependency,
# Keep the following dependencies in line with what we test against
# in https://github.com/apache/beam/blob/master/sdks/python/tox.ini
# For more info, see
# https://docs.google.com/document/d/1c84Gc-cZRCfrU8f7kWGsNR2o8oSRjCM-dGHO9KvPWPw/edit?usp=sharing
'torch': [
'torch<=1.13.0,<=2.0.0'
],
'tensorflow': [
'tensorflow>=2.12rc1,<2.13'
],
'transformers': [
'transformers>=4.28.0,<4.49.0',
'tensorflow==2.12.0',
'torch>=1.9.0,<2.1.0'
],
'tft': [
'tensorflow_transform>=1.14.0,<1.15.0'
],
'onnx': [
'onnxruntime==1.13.1',
'torch==1.13.1',
'tensorflow==2.11.0',
'tf2onnx==1.13.0',
'skl2onnx==1.13',
'transformers==4.25.1'
],
'xgboost': [
'xgboost>=1.6.0,<2.1.3',
'datatable==1.0.0'
],
'tensorflow-hub': [
'tensorflow-hub>=0.14.0,<0.16.0'
]
},
zip_safe=False,
# PyPI package information.
classifiers=[
'Intended Audience :: End Users/Desktop',
'License :: OSI Approved :: Apache Software License',
'Operating System :: POSIX :: Linux',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Programming Language :: Python :: 3.11',
'Programming Language :: Python :: 3.12',
# When updating version classifiers, also update version warnings
# above and in apache_beam/__init__.py.
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
],
license='Apache License, Version 2.0',
keywords=PACKAGE_KEYWORDS,
cmdclass={
'mypy': mypy,
},
)