def install_namenode()

in bigtop-packages/src/charm/hadoop/layer-hadoop-namenode/reactive/namenode.py [0:0]


def install_namenode():
    hookenv.status_set('maintenance', 'installing namenode')
    bigtop = Bigtop()
    hdfs_port = get_layer_opts().port('namenode')
    webhdfs_port = get_layer_opts().port('nn_webapp_http')
    bigtop.render_site_yaml(
        hosts={
            'namenode': get_fqdn(),
        },
        roles=[
            'namenode',
            'mapred-app',
        ],
        # NB: We want the NN to listen on all interfaces, so bind to 0.0.0.0.
        overrides={
            'hadoop::common_hdfs::hadoop_namenode_port': hdfs_port,
            'hadoop::common_hdfs::hadoop_namenode_bind_host': '0.0.0.0',
            'hadoop::common_hdfs::hadoop_namenode_http_port': webhdfs_port,
            'hadoop::common_hdfs::hadoop_namenode_http_bind_host': '0.0.0.0',
            'hadoop::common_hdfs::hadoop_namenode_https_bind_host': '0.0.0.0',
        }
    )
    bigtop.trigger_puppet()

    # /etc/hosts entries from the KV are not currently used for bigtop,
    # but a hosts_map attribute is required by some interfaces (eg: dfs-slave)
    # to signify NN's readiness. Set our NN info in the KV to fulfill this
    # requirement.
    utils.initialize_kv_host()

    # We need to create the 'mapred' and 'spark' user/group since we may not
    # be installing hadoop-mapreduce or spark on this machine. This is needed
    # so the namenode can access yarn and spark job history files in hdfs. Also
    # add our ubuntu user to the hadoop, mapred, and spark groups.
    get_layer_opts().add_users()

    set_state('apache-bigtop-namenode.installed')
    hookenv.status_set('maintenance', 'namenode installed')