session.go (1,564 lines of code) (raw):

/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Content before git sha 34fdeebefcbf183ed7f916f931aa0586fdaa1b40 * Copyright (c) 2012, The Gocql authors, * provided under the BSD-3-Clause License. * See the NOTICE file distributed with this work for additional information. */ package gocql import ( "bytes" "context" "encoding/binary" "errors" "fmt" "io" "net" "strings" "sync" "sync/atomic" "time" "unicode" "github.com/gocql/gocql/internal/lru" ) // Session is the interface used by users to interact with the database. // // It's safe for concurrent use by multiple goroutines and a typical usage // scenario is to have one global session object to interact with the // whole Cassandra cluster. // // This type extends the Node interface by adding a convenient query builder // and automatically sets a default consistency level on all operations // that do not have a consistency level set. type Session struct { cons Consistency pageSize int prefetch float64 routingKeyInfoCache routingKeyInfoLRU schemaDescriber *schemaDescriber trace Tracer queryObserver QueryObserver batchObserver BatchObserver connectObserver ConnectObserver frameObserver FrameHeaderObserver streamObserver StreamObserver hostSource *ringDescriber ringRefresher *refreshDebouncer stmtsLRU *preparedLRU connCfg *ConnConfig executor *queryExecutor pool *policyConnPool policy HostSelectionPolicy ring ring metadata clusterMetadata mu sync.RWMutex control *controlConn // event handlers nodeEvents *eventDebouncer schemaEvents *eventDebouncer // ring metadata useSystemSchema bool hasAggregatesAndFunctions bool cfg ClusterConfig ctx context.Context cancel context.CancelFunc // sessionStateMu protects isClosed and isInitialized. sessionStateMu sync.RWMutex // isClosed is true once Session.Close is finished. isClosed bool // isClosing bool is true once Session.Close is started. isClosing bool // isInitialized is true once Session.init succeeds. // you can use initialized() to read the value. isInitialized bool logger StdLogger } var queryPool = &sync.Pool{ New: func() interface{} { return &Query{routingInfo: &queryRoutingInfo{}, refCount: 1} }, } func addrsToHosts(addrs []string, defaultPort int, logger StdLogger) ([]*HostInfo, error) { var hosts []*HostInfo for _, hostaddr := range addrs { resolvedHosts, err := hostInfo(hostaddr, defaultPort) if err != nil { // Try other hosts if unable to resolve DNS name if _, ok := err.(*net.DNSError); ok { logger.Printf("gocql: dns error: %v\n", err) continue } return nil, err } hosts = append(hosts, resolvedHosts...) } if len(hosts) == 0 { return nil, errors.New("failed to resolve any of the provided hostnames") } return hosts, nil } // NewSession wraps an existing Node. func NewSession(cfg ClusterConfig) (*Session, error) { // Check that hosts in the ClusterConfig is not empty if len(cfg.Hosts) < 1 { return nil, ErrNoHosts } // Check that either Authenticator is set or AuthProvider, not both if cfg.Authenticator != nil && cfg.AuthProvider != nil { return nil, errors.New("Can't use both Authenticator and AuthProvider in cluster config.") } if cfg.SerialConsistency > 0 && !cfg.SerialConsistency.isSerial() { return nil, fmt.Errorf("the default SerialConsistency level is not allowed to be anything else but SERIAL or LOCAL_SERIAL. Recived value: %v", cfg.SerialConsistency) } // TODO: we should take a context in here at some point ctx, cancel := context.WithCancel(context.TODO()) s := &Session{ cons: cfg.Consistency, prefetch: 0.25, cfg: cfg, pageSize: cfg.PageSize, stmtsLRU: &preparedLRU{lru: lru.New(cfg.MaxPreparedStmts)}, connectObserver: cfg.ConnectObserver, ctx: ctx, cancel: cancel, logger: cfg.logger(), } s.schemaDescriber = newSchemaDescriber(s) s.nodeEvents = newEventDebouncer("NodeEvents", s.handleNodeEvent, s.logger) s.schemaEvents = newEventDebouncer("SchemaEvents", s.handleSchemaEvent, s.logger) s.routingKeyInfoCache.lru = lru.New(cfg.MaxRoutingKeyInfo) s.hostSource = &ringDescriber{session: s} s.ringRefresher = newRefreshDebouncer(ringRefreshDebounceTime, func() error { return refreshRing(s.hostSource) }) if cfg.PoolConfig.HostSelectionPolicy == nil { cfg.PoolConfig.HostSelectionPolicy = RoundRobinHostPolicy() } s.pool = cfg.PoolConfig.buildPool(s) s.policy = cfg.PoolConfig.HostSelectionPolicy s.policy.Init(s) s.executor = &queryExecutor{ pool: s.pool, policy: cfg.PoolConfig.HostSelectionPolicy, } s.queryObserver = cfg.QueryObserver s.batchObserver = cfg.BatchObserver s.connectObserver = cfg.ConnectObserver s.frameObserver = cfg.FrameHeaderObserver s.streamObserver = cfg.StreamObserver //Check the TLS Config before trying to connect to anything external connCfg, err := connConfig(&s.cfg) if err != nil { //TODO: Return a typed error return nil, fmt.Errorf("gocql: unable to create session: %v", err) } s.connCfg = connCfg if err := s.init(); err != nil { s.Close() if err == ErrNoConnectionsStarted { //This error used to be generated inside NewSession & returned directly //Forward it on up to be backwards compatible return nil, ErrNoConnectionsStarted } else { // TODO(zariel): dont wrap this error in fmt.Errorf, return a typed error return nil, fmt.Errorf("gocql: unable to create session: %v", err) } } return s, nil } func (s *Session) init() error { hosts, err := addrsToHosts(s.cfg.Hosts, s.cfg.Port, s.logger) if err != nil { return err } s.ring.endpoints = hosts if !s.cfg.disableControlConn { s.control = createControlConn(s) if s.cfg.ProtoVersion == 0 { proto, err := s.control.discoverProtocol(hosts) if err != nil { return fmt.Errorf("unable to discover protocol version: %v", err) } else if proto == 0 { return errors.New("unable to discovery protocol version") } // TODO(zariel): we really only need this in 1 place s.cfg.ProtoVersion = proto s.connCfg.ProtoVersion = proto } if err := s.control.connect(hosts); err != nil { return err } if !s.cfg.DisableInitialHostLookup { var partitioner string newHosts, partitioner, err := s.hostSource.GetHosts() if err != nil { return err } s.policy.SetPartitioner(partitioner) filteredHosts := make([]*HostInfo, 0, len(newHosts)) for _, host := range newHosts { if !s.cfg.filterHost(host) { filteredHosts = append(filteredHosts, host) } } hosts = filteredHosts } } for _, host := range hosts { // In case when host lookup is disabled and when we are in unit tests, // host are not discovered, and we are missing host ID information used // by internal logic. // Associate random UUIDs here with all hosts missing this information. if len(host.HostID()) == 0 { host.SetHostID(MustRandomUUID().String()) } } hostMap := make(map[string]*HostInfo, len(hosts)) for _, host := range hosts { hostMap[host.HostID()] = host } hosts = hosts[:0] // each host will increment left and decrement it after connecting and once // there's none left, we'll close hostCh var left int64 // we will receive up to len(hostMap) of messages so create a buffer so we // don't end up stuck in a goroutine if we stopped listening connectedCh := make(chan struct{}, len(hostMap)) // we add one here because we don't want to end up closing hostCh until we're // done looping and the decerement code might be reached before we've looped // again atomic.AddInt64(&left, 1) for _, host := range hostMap { host := s.ring.addOrUpdate(host) if s.cfg.filterHost(host) { continue } atomic.AddInt64(&left, 1) go func() { s.pool.addHost(host) connectedCh <- struct{}{} // if there are no hosts left, then close the hostCh to unblock the loop // below if its still waiting if atomic.AddInt64(&left, -1) == 0 { close(connectedCh) } }() hosts = append(hosts, host) } // once we're done looping we subtract the one we initially added and check // to see if we should close if atomic.AddInt64(&left, -1) == 0 { close(connectedCh) } // before waiting for them to connect, add them all to the policy so we can // utilize efficiencies by calling AddHosts if the policy supports it type bulkAddHosts interface { AddHosts([]*HostInfo) } if v, ok := s.policy.(bulkAddHosts); ok { v.AddHosts(hosts) } else { for _, host := range hosts { s.policy.AddHost(host) } } readyPolicy, _ := s.policy.(ReadyPolicy) // now loop over connectedCh until it's closed (meaning we've connected to all) // or until the policy says we're ready for range connectedCh { if readyPolicy != nil && readyPolicy.Ready() { break } } // TODO(zariel): we probably dont need this any more as we verify that we // can connect to one of the endpoints supplied by using the control conn. // See if there are any connections in the pool if s.cfg.ReconnectInterval > 0 { go s.reconnectDownedHosts(s.cfg.ReconnectInterval) } // If we disable the initial host lookup, we need to still check if the // cluster is using the newer system schema or not... however, if control // connection is disable, we really have no choice, so we just make our // best guess... if !s.cfg.disableControlConn && s.cfg.DisableInitialHostLookup { newer, _ := checkSystemSchema(s.control) s.useSystemSchema = newer } else { version := s.ring.rrHost().Version() s.useSystemSchema = version.AtLeast(3, 0, 0) s.hasAggregatesAndFunctions = version.AtLeast(2, 2, 0) } if s.pool.Size() == 0 { return ErrNoConnectionsStarted } // Invoke KeyspaceChanged to let the policy cache the session keyspace // parameters. This is used by tokenAwareHostPolicy to discover replicas. if !s.cfg.disableControlConn && s.cfg.Keyspace != "" { s.policy.KeyspaceChanged(KeyspaceUpdateEvent{Keyspace: s.cfg.Keyspace}) } s.sessionStateMu.Lock() s.isInitialized = true s.sessionStateMu.Unlock() return nil } // AwaitSchemaAgreement will wait until schema versions across all nodes in the // cluster are the same (as seen from the point of view of the control connection). // The maximum amount of time this takes is governed // by the MaxWaitSchemaAgreement setting in the configuration (default: 60s). // AwaitSchemaAgreement returns an error in case schema versions are not the same // after the timeout specified in MaxWaitSchemaAgreement elapses. func (s *Session) AwaitSchemaAgreement(ctx context.Context) error { if s.cfg.disableControlConn { return errNoControl } return s.control.withConn(func(conn *Conn) *Iter { return &Iter{err: conn.awaitSchemaAgreement(ctx)} }).err } func (s *Session) reconnectDownedHosts(intv time.Duration) { reconnectTicker := time.NewTicker(intv) defer reconnectTicker.Stop() for { select { case <-reconnectTicker.C: hosts := s.ring.allHosts() // Print session.ring for debug. if gocqlDebug { buf := bytes.NewBufferString("Session.ring:") for _, h := range hosts { buf.WriteString("[" + h.ConnectAddress().String() + ":" + h.State().String() + "]") } s.logger.Println(buf.String()) } for _, h := range hosts { if h.IsUp() { continue } // we let the pool call handleNodeConnected to change the host state s.pool.addHost(h) } case <-s.ctx.Done(): return } } } // SetConsistency sets the default consistency level for this session. This // setting can also be changed on a per-query basis and the default value // is Quorum. func (s *Session) SetConsistency(cons Consistency) { s.mu.Lock() s.cons = cons s.mu.Unlock() } // SetPageSize sets the default page size for this session. A value <= 0 will // disable paging. This setting can also be changed on a per-query basis. func (s *Session) SetPageSize(n int) { s.mu.Lock() s.pageSize = n s.mu.Unlock() } // SetPrefetch sets the default threshold for pre-fetching new pages. If // there are only p*pageSize rows remaining, the next page will be requested // automatically. This value can also be changed on a per-query basis and // the default value is 0.25. func (s *Session) SetPrefetch(p float64) { s.mu.Lock() s.prefetch = p s.mu.Unlock() } // SetTrace sets the default tracer for this session. This setting can also // be changed on a per-query basis. func (s *Session) SetTrace(trace Tracer) { s.mu.Lock() s.trace = trace s.mu.Unlock() } // Query generates a new query object for interacting with the database. // Further details of the query may be tweaked using the resulting query // value before the query is executed. Query is automatically prepared // if it has not previously been executed. func (s *Session) Query(stmt string, values ...interface{}) *Query { qry := queryPool.Get().(*Query) qry.session = s qry.stmt = stmt qry.values = values qry.hostID = "" qry.defaultsFromSession() return qry } type QueryInfo struct { Id []byte Args []ColumnInfo Rval []ColumnInfo PKeyColumns []int } // Bind generates a new query object based on the query statement passed in. // The query is automatically prepared if it has not previously been executed. // The binding callback allows the application to define which query argument // values will be marshalled as part of the query execution. // During execution, the meta data of the prepared query will be routed to the // binding callback, which is responsible for producing the query argument values. func (s *Session) Bind(stmt string, b func(q *QueryInfo) ([]interface{}, error)) *Query { qry := queryPool.Get().(*Query) qry.session = s qry.stmt = stmt qry.binding = b qry.defaultsFromSession() return qry } // Close closes all connections. The session is unusable after this // operation. func (s *Session) Close() { s.sessionStateMu.Lock() if s.isClosing { s.sessionStateMu.Unlock() return } s.isClosing = true s.sessionStateMu.Unlock() if s.pool != nil { s.pool.Close() } if s.control != nil { s.control.close() } if s.nodeEvents != nil { s.nodeEvents.stop() } if s.schemaEvents != nil { s.schemaEvents.stop() } if s.ringRefresher != nil { s.ringRefresher.stop() } if s.cancel != nil { s.cancel() } s.sessionStateMu.Lock() s.isClosed = true s.sessionStateMu.Unlock() } func (s *Session) Closed() bool { s.sessionStateMu.RLock() closed := s.isClosed s.sessionStateMu.RUnlock() return closed } func (s *Session) initialized() bool { s.sessionStateMu.RLock() initialized := s.isInitialized s.sessionStateMu.RUnlock() return initialized } func (s *Session) executeQuery(qry *Query) (it *Iter) { // fail fast if s.Closed() { return &Iter{err: ErrSessionClosed} } iter, err := s.executor.executeQuery(qry) if err != nil { return &Iter{err: err} } if iter == nil { panic("nil iter") } return iter } func (s *Session) removeHost(h *HostInfo) { s.policy.RemoveHost(h) hostID := h.HostID() s.pool.removeHost(hostID) s.ring.removeHost(hostID) } // KeyspaceMetadata returns the schema metadata for the keyspace specified. Returns an error if the keyspace does not exist. func (s *Session) KeyspaceMetadata(keyspace string) (*KeyspaceMetadata, error) { // fail fast if s.Closed() { return nil, ErrSessionClosed } else if keyspace == "" { return nil, ErrNoKeyspace } return s.schemaDescriber.getSchema(keyspace) } func (s *Session) getConn() *Conn { hosts := s.ring.allHosts() for _, host := range hosts { if !host.IsUp() { continue } pool, ok := s.pool.getPool(host) if !ok { continue } else if conn := pool.Pick(); conn != nil { return conn } } return nil } // Returns routing key indexes and type info. // If keyspace == "" it uses the keyspace which is specified in Cluster.Keyspace func (s *Session) routingKeyInfo(ctx context.Context, stmt string, keyspace string) (*routingKeyInfo, error) { if keyspace == "" { keyspace = s.cfg.Keyspace } routingKeyInfoCacheKey := keyspace + stmt s.routingKeyInfoCache.mu.Lock() // Using here keyspace + stmt as a cache key because // the query keyspace could be overridden via SetKeyspace entry, cached := s.routingKeyInfoCache.lru.Get(routingKeyInfoCacheKey) if cached { // done accessing the cache s.routingKeyInfoCache.mu.Unlock() // the entry is an inflight struct similar to that used by // Conn to prepare statements inflight := entry.(*inflightCachedEntry) // wait for any inflight work inflight.wg.Wait() if inflight.err != nil { return nil, inflight.err } key, _ := inflight.value.(*routingKeyInfo) return key, nil } // create a new inflight entry while the data is created inflight := new(inflightCachedEntry) inflight.wg.Add(1) defer inflight.wg.Done() s.routingKeyInfoCache.lru.Add(routingKeyInfoCacheKey, inflight) s.routingKeyInfoCache.mu.Unlock() var ( info *preparedStatment partitionKey []*ColumnMetadata ) conn := s.getConn() if conn == nil { // TODO: better error? inflight.err = errors.New("gocql: unable to fetch prepared info: no connection available") return nil, inflight.err } // get the query info for the statement info, inflight.err = conn.prepareStatement(ctx, stmt, nil, keyspace) if inflight.err != nil { // don't cache this error s.routingKeyInfoCache.Remove(stmt) return nil, inflight.err } // TODO: it would be nice to mark hosts here but as we are not using the policies // to fetch hosts we cant if info.request.colCount == 0 { // no arguments, no routing key, and no error return nil, nil } table := info.request.table if info.request.keyspace != "" { keyspace = info.request.keyspace } if len(info.request.pkeyColumns) > 0 { // proto v4 dont need to calculate primary key columns types := make([]TypeInfo, len(info.request.pkeyColumns)) for i, col := range info.request.pkeyColumns { types[i] = info.request.columns[col].TypeInfo } routingKeyInfo := &routingKeyInfo{ indexes: info.request.pkeyColumns, types: types, keyspace: keyspace, table: table, } inflight.value = routingKeyInfo return routingKeyInfo, nil } var keyspaceMetadata *KeyspaceMetadata keyspaceMetadata, inflight.err = s.KeyspaceMetadata(info.request.columns[0].Keyspace) if inflight.err != nil { // don't cache this error s.routingKeyInfoCache.Remove(stmt) return nil, inflight.err } tableMetadata, found := keyspaceMetadata.Tables[table] if !found { // unlikely that the statement could be prepared and the metadata for // the table couldn't be found, but this may indicate either a bug // in the metadata code, or that the table was just dropped. inflight.err = ErrNoMetadata // don't cache this error s.routingKeyInfoCache.Remove(stmt) return nil, inflight.err } partitionKey = tableMetadata.PartitionKey size := len(partitionKey) routingKeyInfo := &routingKeyInfo{ indexes: make([]int, size), types: make([]TypeInfo, size), keyspace: keyspace, table: table, } for keyIndex, keyColumn := range partitionKey { // set an indicator for checking if the mapping is missing routingKeyInfo.indexes[keyIndex] = -1 // find the column in the query info for argIndex, boundColumn := range info.request.columns { if keyColumn.Name == boundColumn.Name { // there may be many such bound columns, pick the first routingKeyInfo.indexes[keyIndex] = argIndex routingKeyInfo.types[keyIndex] = boundColumn.TypeInfo break } } if routingKeyInfo.indexes[keyIndex] == -1 { // missing a routing key column mapping // no routing key, and no error return nil, nil } } // cache this result inflight.value = routingKeyInfo return routingKeyInfo, nil } func (b *Batch) execute(ctx context.Context, conn *Conn) *Iter { return conn.executeBatch(ctx, b) } // Exec executes a batch operation and returns nil if successful // otherwise an error is returned describing the failure. func (b *Batch) Exec() error { iter := b.session.executeBatch(b) return iter.Close() } func (s *Session) executeBatch(batch *Batch) *Iter { // fail fast if s.Closed() { return &Iter{err: ErrSessionClosed} } // Prevent the execution of the batch if greater than the limit // Currently batches have a limit of 65536 queries. // https://datastax-oss.atlassian.net/browse/JAVA-229 if batch.Size() > BatchSizeMaximum { return &Iter{err: ErrTooManyStmts} } iter, err := s.executor.executeQuery(batch) if err != nil { return &Iter{err: err} } return iter } // Deprecated: use Batch.Exec instead. // ExecuteBatch executes a batch operation and returns nil if successful // otherwise an error is returned describing the failure. func (s *Session) ExecuteBatch(batch *Batch) error { iter := s.executeBatch(batch) return iter.Close() } // Deprecated: use Batch.ExecCAS instead // ExecuteBatchCAS executes a batch operation and returns true if successful and // an iterator (to scan additional rows if more than one conditional statement) // was sent. // Further scans on the interator must also remember to include // the applied boolean as the first argument to *Iter.Scan func (s *Session) ExecuteBatchCAS(batch *Batch, dest ...interface{}) (applied bool, iter *Iter, err error) { return batch.ExecCAS(dest...) } // ExecCAS executes a batch operation and returns true if successful and // an iterator (to scan additional rows if more than one conditional statement) // was sent. // Further scans on the interator must also remember to include // the applied boolean as the first argument to *Iter.Scan func (b *Batch) ExecCAS(dest ...interface{}) (applied bool, iter *Iter, err error) { iter = b.session.executeBatch(b) if err := iter.checkErrAndNotFound(); err != nil { iter.Close() return false, nil, err } if len(iter.Columns()) > 1 { dest = append([]interface{}{&applied}, dest...) iter.Scan(dest...) } else { iter.Scan(&applied) } return applied, iter, iter.err } // Deprecated: use Batch.MapExecCAS instead // MapExecuteBatchCAS executes a batch operation much like ExecuteBatchCAS, // however it accepts a map rather than a list of arguments for the initial // scan. func (s *Session) MapExecuteBatchCAS(batch *Batch, dest map[string]interface{}) (applied bool, iter *Iter, err error) { return batch.MapExecCAS(dest) } // MapExecCAS executes a batch operation much like ExecuteBatchCAS, // however it accepts a map rather than a list of arguments for the initial // scan. func (b *Batch) MapExecCAS(dest map[string]interface{}) (applied bool, iter *Iter, err error) { iter = b.session.executeBatch(b) if err := iter.checkErrAndNotFound(); err != nil { iter.Close() return false, nil, err } iter.MapScan(dest) if iter.err != nil { return false, iter, iter.err } // check if [applied] was returned, otherwise it might not be CAS if _, ok := dest["[applied]"]; ok { applied = dest["[applied]"].(bool) delete(dest, "[applied]") } // we usually close here, but instead of closing, just returin an error // if MapScan failed. Although Close just returns err, using Close // here might be confusing as we are not actually closing the iter return applied, iter, iter.err } type hostMetrics struct { // Attempts is count of how many times this query has been attempted for this host. // An attempt is either a retry or fetching next page of results. Attempts int // TotalLatency is the sum of attempt latencies for this host in nanoseconds. TotalLatency int64 } type queryMetrics struct { l sync.RWMutex m map[string]*hostMetrics // totalAttempts is total number of attempts. // Equal to sum of all hostMetrics' Attempts. totalAttempts int } // preFilledQueryMetrics initializes new queryMetrics based on per-host supplied data. func preFilledQueryMetrics(m map[string]*hostMetrics) *queryMetrics { qm := &queryMetrics{m: m} for _, hm := range qm.m { qm.totalAttempts += hm.Attempts } return qm } // hostMetrics returns a snapshot of metrics for given host. // If the metrics for host don't exist, they are created. func (qm *queryMetrics) hostMetrics(host *HostInfo) *hostMetrics { qm.l.Lock() metrics := qm.hostMetricsLocked(host) copied := new(hostMetrics) *copied = *metrics qm.l.Unlock() return copied } // hostMetricsLocked gets or creates host metrics for given host. // It must be called only while holding qm.l lock. func (qm *queryMetrics) hostMetricsLocked(host *HostInfo) *hostMetrics { metrics, exists := qm.m[host.ConnectAddress().String()] if !exists { // if the host is not in the map, it means it's been accessed for the first time metrics = &hostMetrics{} qm.m[host.ConnectAddress().String()] = metrics } return metrics } // attempts returns the number of times the query was executed. func (qm *queryMetrics) attempts() int { qm.l.Lock() attempts := qm.totalAttempts qm.l.Unlock() return attempts } func (qm *queryMetrics) latency() int64 { qm.l.Lock() var ( attempts int latency int64 ) for _, metric := range qm.m { attempts += metric.Attempts latency += metric.TotalLatency } qm.l.Unlock() if attempts > 0 { return latency / int64(attempts) } return 0 } // attempt adds given number of attempts and latency for given host. // It returns previous total attempts. // If needsHostMetrics is true, a copy of updated hostMetrics is returned. func (qm *queryMetrics) attempt(addAttempts int, addLatency time.Duration, host *HostInfo, needsHostMetrics bool) (int, *hostMetrics) { qm.l.Lock() totalAttempts := qm.totalAttempts qm.totalAttempts += addAttempts updateHostMetrics := qm.hostMetricsLocked(host) updateHostMetrics.Attempts += addAttempts updateHostMetrics.TotalLatency += addLatency.Nanoseconds() var hostMetricsCopy *hostMetrics if needsHostMetrics { hostMetricsCopy = new(hostMetrics) *hostMetricsCopy = *updateHostMetrics } qm.l.Unlock() return totalAttempts, hostMetricsCopy } // Query represents a CQL statement that can be executed. type Query struct { stmt string values []interface{} cons Consistency pageSize int routingKey []byte pageState []byte prefetch float64 trace Tracer observer QueryObserver session *Session conn *Conn rt RetryPolicy spec SpeculativeExecutionPolicy binding func(q *QueryInfo) ([]interface{}, error) serialCons Consistency defaultTimestamp bool defaultTimestampValue int64 disableSkipMetadata bool context context.Context idempotent bool customPayload map[string][]byte metrics *queryMetrics refCount uint32 disableAutoPage bool // getKeyspace is field so that it can be overriden in tests getKeyspace func() string // used by control conn queries to prevent triggering a write to systems // tables in AWS MCS see skipPrepare bool // routingInfo is a pointer because Query can be copied and copyable struct can't hold a mutex. routingInfo *queryRoutingInfo // hostID specifies the host on which the query should be executed. // If it is empty, then the host is picked by HostSelectionPolicy hostID string keyspace string nowInSecondsValue *int } type queryRoutingInfo struct { // mu protects contents of queryRoutingInfo. mu sync.RWMutex keyspace string table string } func (q *Query) defaultsFromSession() { s := q.session s.mu.RLock() q.cons = s.cons q.pageSize = s.pageSize q.trace = s.trace q.observer = s.queryObserver q.prefetch = s.prefetch q.rt = s.cfg.RetryPolicy q.serialCons = s.cfg.SerialConsistency q.defaultTimestamp = s.cfg.DefaultTimestamp q.idempotent = s.cfg.DefaultIdempotence q.metrics = &queryMetrics{m: make(map[string]*hostMetrics)} q.spec = &NonSpeculativeExecution{} s.mu.RUnlock() } // Statement returns the statement that was used to generate this query. func (q Query) Statement() string { return q.stmt } // Values returns the values passed in via Bind. // This can be used by a wrapper type that needs to access the bound values. func (q Query) Values() []interface{} { return q.values } // String implements the stringer interface. func (q Query) String() string { return fmt.Sprintf("[query statement=%q values=%+v consistency=%s]", q.stmt, q.values, q.cons) } // Attempts returns the number of times the query was executed. func (q *Query) Attempts() int { return q.metrics.attempts() } func (q *Query) AddAttempts(i int, host *HostInfo) { q.metrics.attempt(i, 0, host, false) } // Latency returns the average amount of nanoseconds per attempt of the query. func (q *Query) Latency() int64 { return q.metrics.latency() } func (q *Query) AddLatency(l int64, host *HostInfo) { q.metrics.attempt(0, time.Duration(l)*time.Nanosecond, host, false) } // Consistency sets the consistency level for this query. If no consistency // level have been set, the default consistency level of the cluster // is used. func (q *Query) Consistency(c Consistency) *Query { q.cons = c return q } // GetConsistency returns the currently configured consistency level for // the query. func (q *Query) GetConsistency() Consistency { return q.cons } // Same as Consistency but without a return value func (q *Query) SetConsistency(c Consistency) { q.cons = c } // CustomPayload sets the custom payload level for this query. func (q *Query) CustomPayload(customPayload map[string][]byte) *Query { q.customPayload = customPayload return q } func (q *Query) Context() context.Context { if q.context == nil { return context.Background() } return q.context } // Trace enables tracing of this query. Look at the documentation of the // Tracer interface to learn more about tracing. func (q *Query) Trace(trace Tracer) *Query { q.trace = trace return q } // Observer enables query-level observer on this query. // The provided observer will be called every time this query is executed. func (q *Query) Observer(observer QueryObserver) *Query { q.observer = observer return q } // PageSize will tell the iterator to fetch the result in pages of size n. // This is useful for iterating over large result sets, but setting the // page size too low might decrease the performance. This feature is only // available in Cassandra 2 and onwards. func (q *Query) PageSize(n int) *Query { q.pageSize = n return q } // DefaultTimestamp will enable the with default timestamp flag on the query. // If enable, this will replace the server side assigned // timestamp as default timestamp. Note that a timestamp in the query itself // will still override this timestamp. This is entirely optional. // // Only available on protocol >= 3 func (q *Query) DefaultTimestamp(enable bool) *Query { q.defaultTimestamp = enable return q } // WithTimestamp will enable the with default timestamp flag on the query // like DefaultTimestamp does. But also allows to define value for timestamp. // It works the same way as USING TIMESTAMP in the query itself, but // should not break prepared query optimization. // // Only available on protocol >= 3 func (q *Query) WithTimestamp(timestamp int64) *Query { q.DefaultTimestamp(true) q.defaultTimestampValue = timestamp return q } // RoutingKey sets the routing key to use when a token aware connection // pool is used to optimize the routing of this query. func (q *Query) RoutingKey(routingKey []byte) *Query { q.routingKey = routingKey return q } func (q *Query) withContext(ctx context.Context) ExecutableQuery { // I really wish go had covariant types return q.WithContext(ctx) } // WithContext returns a shallow copy of q with its context // set to ctx. // // The provided context controls the entire lifetime of executing a // query, queries will be canceled and return once the context is // canceled. func (q *Query) WithContext(ctx context.Context) *Query { q2 := *q q2.context = ctx return &q2 } // Deprecate: does nothing, cancel the context passed to WithContext func (q *Query) Cancel() { // TODO: delete } func (q *Query) execute(ctx context.Context, conn *Conn) *Iter { return conn.executeQuery(ctx, q) } func (q *Query) attempt(keyspace string, end, start time.Time, iter *Iter, host *HostInfo) { latency := end.Sub(start) attempt, metricsForHost := q.metrics.attempt(1, latency, host, q.observer != nil) if q.observer != nil { q.observer.ObserveQuery(q.Context(), ObservedQuery{ Keyspace: keyspace, Statement: q.stmt, Values: q.values, Start: start, End: end, Rows: iter.numRows, Host: host, Metrics: metricsForHost, Err: iter.err, Attempt: attempt, }) } } func (q *Query) retryPolicy() RetryPolicy { return q.rt } // Keyspace returns the keyspace the query will be executed against. func (q *Query) Keyspace() string { if q.getKeyspace != nil { return q.getKeyspace() } if q.routingInfo.keyspace != "" { return q.routingInfo.keyspace } if q.keyspace != "" { return q.keyspace } if q.session == nil { return "" } // TODO(chbannis): this should be parsed from the query or we should let // this be set by users. return q.session.cfg.Keyspace } // Table returns name of the table the query will be executed against. func (q *Query) Table() string { return q.routingInfo.table } // GetRoutingKey gets the routing key to use for routing this query. If // a routing key has not been explicitly set, then the routing key will // be constructed if possible using the keyspace's schema and the query // info for this query statement. If the routing key cannot be determined // then nil will be returned with no error. On any error condition, // an error description will be returned. func (q *Query) GetRoutingKey() ([]byte, error) { if q.routingKey != nil { return q.routingKey, nil } else if q.binding != nil && len(q.values) == 0 { // If this query was created using session.Bind we wont have the query // values yet, so we have to pass down to the next policy. // TODO: Remove this and handle this case return nil, nil } // try to determine the routing key routingKeyInfo, err := q.session.routingKeyInfo(q.Context(), q.stmt, q.keyspace) if err != nil { return nil, err } if routingKeyInfo != nil { q.routingInfo.mu.Lock() q.routingInfo.keyspace = routingKeyInfo.keyspace q.routingInfo.table = routingKeyInfo.table q.routingInfo.mu.Unlock() } return createRoutingKey(routingKeyInfo, q.values) } func (q *Query) shouldPrepare() bool { stmt := strings.TrimLeftFunc(strings.TrimRightFunc(q.stmt, func(r rune) bool { return unicode.IsSpace(r) || r == ';' }), unicode.IsSpace) var stmtType string if n := strings.IndexFunc(stmt, unicode.IsSpace); n >= 0 { stmtType = strings.ToLower(stmt[:n]) } if stmtType == "begin" { if n := strings.LastIndexFunc(stmt, unicode.IsSpace); n >= 0 { stmtType = strings.ToLower(stmt[n+1:]) } } switch stmtType { case "select", "insert", "update", "delete", "batch": return true } return false } // SetPrefetch sets the default threshold for pre-fetching new pages. If // there are only p*pageSize rows remaining, the next page will be requested // automatically. func (q *Query) Prefetch(p float64) *Query { q.prefetch = p return q } // RetryPolicy sets the policy to use when retrying the query. func (q *Query) RetryPolicy(r RetryPolicy) *Query { q.rt = r return q } // SetSpeculativeExecutionPolicy sets the execution policy func (q *Query) SetSpeculativeExecutionPolicy(sp SpeculativeExecutionPolicy) *Query { q.spec = sp return q } // speculativeExecutionPolicy fetches the policy func (q *Query) speculativeExecutionPolicy() SpeculativeExecutionPolicy { return q.spec } // IsIdempotent returns whether the query is marked as idempotent. // Non-idempotent query won't be retried. // See "Retries and speculative execution" in package docs for more details. func (q *Query) IsIdempotent() bool { return q.idempotent } // Idempotent marks the query as being idempotent or not depending on // the value. // Non-idempotent query won't be retried. // See "Retries and speculative execution" in package docs for more details. func (q *Query) Idempotent(value bool) *Query { q.idempotent = value return q } // Bind sets query arguments of query. This can also be used to rebind new query arguments // to an existing query instance. func (q *Query) Bind(v ...interface{}) *Query { q.values = v q.pageState = nil return q } // SerialConsistency sets the consistency level for the // serial phase of conditional updates. That consistency can only be // either SERIAL or LOCAL_SERIAL and if not present, it defaults to // SERIAL. This option will be ignored for anything else that a // conditional update/insert. func (q *Query) SerialConsistency(cons Consistency) *Query { if !cons.isSerial() { panic("serial consistency can only be SERIAL or LOCAL_SERIAL got " + cons.String()) } q.serialCons = cons return q } // PageState sets the paging state for the query to resume paging from a specific // point in time. Setting this will disable to query paging for this query, and // must be used for all subsequent pages. func (q *Query) PageState(state []byte) *Query { q.pageState = state q.disableAutoPage = true return q } // NoSkipMetadata will override the internal result metadata cache so that the driver does not // send skip_metadata for queries, this means that the result will always contain // the metadata to parse the rows and will not reuse the metadata from the prepared // statement. This should only be used to work around cassandra bugs, such as when using // CAS operations which do not end in Cas. // // See https://issues.apache.org/jira/browse/CASSANDRA-11099 // https://github.com/apache/cassandra-gocql-driver/issues/612 func (q *Query) NoSkipMetadata() *Query { q.disableSkipMetadata = true return q } // Exec executes the query without returning any rows. func (q *Query) Exec() error { return q.Iter().Close() } func isUseStatement(stmt string) bool { if len(stmt) < 3 { return false } return strings.EqualFold(stmt[0:3], "use") } // Iter executes the query and returns an iterator capable of iterating // over all results. func (q *Query) Iter() *Iter { if isUseStatement(q.stmt) { return &Iter{err: ErrUseStmt} } // if the query was specifically run on a connection then re-use that // connection when fetching the next results if q.conn != nil { return q.conn.executeQuery(q.Context(), q) } return q.session.executeQuery(q) } // MapScan executes the query, copies the columns of the first selected // row into the map pointed at by m and discards the rest. If no rows // were selected, ErrNotFound is returned. func (q *Query) MapScan(m map[string]interface{}) error { iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return err } iter.MapScan(m) return iter.Close() } // Scan executes the query, copies the columns of the first selected // row into the values pointed at by dest and discards the rest. If no rows // were selected, ErrNotFound is returned. func (q *Query) Scan(dest ...interface{}) error { iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return err } iter.Scan(dest...) return iter.Close() } // ScanCAS executes a lightweight transaction (i.e. an UPDATE or INSERT // statement containing an IF clause). If the transaction fails because // the existing values did not match, the previous values will be stored // in dest. // // As for INSERT .. IF NOT EXISTS, previous values will be returned as if // SELECT * FROM. So using ScanCAS with INSERT is inherently prone to // column mismatching. Use MapScanCAS to capture them safely. func (q *Query) ScanCAS(dest ...interface{}) (applied bool, err error) { q.disableSkipMetadata = true iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return false, err } if len(iter.Columns()) > 1 { dest = append([]interface{}{&applied}, dest...) iter.Scan(dest...) } else { iter.Scan(&applied) } return applied, iter.Close() } // MapScanCAS executes a lightweight transaction (i.e. an UPDATE or INSERT // statement containing an IF clause). If the transaction fails because // the existing values did not match, the previous values will be stored // in dest map. // // As for INSERT .. IF NOT EXISTS, previous values will be returned as if // SELECT * FROM. So using ScanCAS with INSERT is inherently prone to // column mismatching. MapScanCAS is added to capture them safely. func (q *Query) MapScanCAS(dest map[string]interface{}) (applied bool, err error) { q.disableSkipMetadata = true iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return false, err } iter.MapScan(dest) if iter.err != nil { return false, iter.err } // check if [applied] was returned, otherwise it might not be CAS if _, ok := dest["[applied]"]; ok { applied = dest["[applied]"].(bool) delete(dest, "[applied]") } return applied, iter.Close() } // Release releases a query back into a pool of queries. Released Queries // cannot be reused. // // Example: // // qry := session.Query("SELECT * FROM my_table") // qry.Exec() // qry.Release() func (q *Query) Release() { q.decRefCount() } // reset zeroes out all fields of a query so that it can be safely pooled. func (q *Query) reset() { *q = Query{routingInfo: &queryRoutingInfo{}, refCount: 1} } func (q *Query) incRefCount() { atomic.AddUint32(&q.refCount, 1) } func (q *Query) decRefCount() { if res := atomic.AddUint32(&q.refCount, ^uint32(0)); res == 0 { // do release q.reset() queryPool.Put(q) } } func (q *Query) borrowForExecution() { q.incRefCount() } func (q *Query) releaseAfterExecution() { q.decRefCount() } // SetHostID allows to define the host the query should be executed against. If the // host was filtered or otherwise unavailable, then the query will error. If an empty // string is sent, the default behavior, using the configured HostSelectionPolicy will // be used. A hostID can be obtained from HostInfo.HostID() after calling GetHosts(). func (q *Query) SetHostID(hostID string) *Query { q.hostID = hostID return q } // GetHostID returns id of the host on which query should be executed. func (q *Query) GetHostID() string { return q.hostID } // SetKeyspace will enable keyspace flag on the query. // It allows to specify the keyspace that the query should be executed in // // Only available on protocol >= 5. func (q *Query) SetKeyspace(keyspace string) *Query { q.keyspace = keyspace return q } // WithNowInSeconds will enable the with now_in_seconds flag on the query. // Also, it allows to define now_in_seconds value. // // Only available on protocol >= 5. func (q *Query) WithNowInSeconds(now int) *Query { q.nowInSecondsValue = &now return q } // Iter represents an iterator that can be used to iterate over all rows that // were returned by a query. The iterator might send additional queries to the // database during the iteration if paging was enabled. type Iter struct { err error pos int meta resultMetadata numRows int next *nextIter host *HostInfo framer *framer closed int32 } // Host returns the host which the query was sent to. func (iter *Iter) Host() *HostInfo { return iter.host } // Columns returns the name and type of the selected columns. func (iter *Iter) Columns() []ColumnInfo { return iter.meta.columns } type Scanner interface { // Next advances the row pointer to point at the next row, the row is valid until // the next call of Next. It returns true if there is a row which is available to be // scanned into with Scan. // Next must be called before every call to Scan. Next() bool // Scan copies the current row's columns into dest. If the length of dest does not equal // the number of columns returned in the row an error is returned. If an error is encountered // when unmarshalling a column into the value in dest an error is returned and the row is invalidated // until the next call to Next. // Next must be called before calling Scan, if it is not an error is returned. Scan(...interface{}) error // Err returns the if there was one during iteration that resulted in iteration being unable to complete. // Err will also release resources held by the iterator, the Scanner should not used after being called. Err() error } type iterScanner struct { iter *Iter cols [][]byte valid bool } func (is *iterScanner) Next() bool { iter := is.iter if iter.err != nil { return false } if iter.pos >= iter.numRows { if iter.next != nil { is.iter = iter.next.fetch() return is.Next() } return false } for i := 0; i < len(is.cols); i++ { col, err := iter.readColumn() if err != nil { iter.err = err return false } is.cols[i] = col } iter.pos++ is.valid = true return true } func scanColumn(p []byte, col ColumnInfo, dest []interface{}) (int, error) { if dest[0] == nil { return 1, nil } if col.TypeInfo.Type() == TypeTuple { // this will panic, actually a bug, please report tuple := col.TypeInfo.(TupleTypeInfo) count := len(tuple.Elems) // here we pass in a slice of the struct which has the number number of // values as elements in the tuple if err := Unmarshal(col.TypeInfo, p, dest[:count]); err != nil { return 0, err } return count, nil } else { if err := Unmarshal(col.TypeInfo, p, dest[0]); err != nil { return 0, err } return 1, nil } } func (is *iterScanner) Scan(dest ...interface{}) error { if !is.valid { return errors.New("gocql: Scan called without calling Next") } iter := is.iter // currently only support scanning into an expand tuple, such that its the same // as scanning in more values from a single column if len(dest) != iter.meta.actualColCount { return fmt.Errorf("gocql: not enough columns to scan into: have %d want %d", len(dest), iter.meta.actualColCount) } // i is the current position in dest, could posible replace it and just use // slices of dest i := 0 var err error for _, col := range iter.meta.columns { var n int n, err = scanColumn(is.cols[i], col, dest[i:]) if err != nil { break } i += n } is.valid = false return err } func (is *iterScanner) Err() error { iter := is.iter is.iter = nil is.cols = nil is.valid = false return iter.Close() } // Scanner returns a row Scanner which provides an interface to scan rows in a manner which is // similar to database/sql. The iter should NOT be used again after calling this method. func (iter *Iter) Scanner() Scanner { if iter == nil { return nil } return &iterScanner{iter: iter, cols: make([][]byte, len(iter.meta.columns))} } func (iter *Iter) readColumn() ([]byte, error) { return iter.framer.readBytesInternal() } // Scan consumes the next row of the iterator and copies the columns of the // current row into the values pointed at by dest. Use nil as a dest value // to skip the corresponding column. Scan might send additional queries // to the database to retrieve the next set of rows if paging was enabled. // // Scan returns true if the row was successfully unmarshaled or false if the // end of the result set was reached or if an error occurred. Close should // be called afterwards to retrieve any potential errors. func (iter *Iter) Scan(dest ...interface{}) bool { if iter.err != nil { return false } if iter.pos >= iter.numRows { if iter.next != nil { *iter = *iter.next.fetch() return iter.Scan(dest...) } return false } if iter.next != nil && iter.pos >= iter.next.pos { iter.next.fetchAsync() } // currently only support scanning into an expand tuple, such that its the same // as scanning in more values from a single column if len(dest) != iter.meta.actualColCount { iter.err = fmt.Errorf("gocql: not enough columns to scan into: have %d want %d", len(dest), iter.meta.actualColCount) return false } // i is the current position in dest, could posible replace it and just use // slices of dest i := 0 for _, col := range iter.meta.columns { colBytes, err := iter.readColumn() if err != nil { iter.err = err return false } n, err := scanColumn(colBytes, col, dest[i:]) if err != nil { iter.err = err return false } i += n } iter.pos++ return true } // GetCustomPayload returns any parsed custom payload results if given in the // response from Cassandra. Note that the result is not a copy. // // This additional feature of CQL Protocol v4 // allows additional results and query information to be returned by // custom QueryHandlers running in your C* cluster. // See https://datastax.github.io/java-driver/manual/custom_payloads/ func (iter *Iter) GetCustomPayload() map[string][]byte { if iter.framer != nil { return iter.framer.customPayload } return nil } // Warnings returns any warnings generated if given in the response from Cassandra. // // This is only available starting with CQL Protocol v4. func (iter *Iter) Warnings() []string { if iter.framer != nil { return iter.framer.header.warnings } return nil } // Close closes the iterator and returns any errors that happened during // the query or the iteration. func (iter *Iter) Close() error { if atomic.CompareAndSwapInt32(&iter.closed, 0, 1) { if iter.framer != nil { iter.framer = nil } } return iter.err } // WillSwitchPage detects if iterator reached end of current page // and the next page is available. func (iter *Iter) WillSwitchPage() bool { return iter.pos >= iter.numRows && iter.next != nil } // checkErrAndNotFound handle error and NotFound in one method. func (iter *Iter) checkErrAndNotFound() error { if iter.err != nil { return iter.err } else if iter.numRows == 0 { return ErrNotFound } return nil } // PageState return the current paging state for a query which can be used for // subsequent queries to resume paging this point. func (iter *Iter) PageState() []byte { return iter.meta.pagingState } // NumRows returns the number of rows in this pagination, it will update when new // pages are fetched, it is not the value of the total number of rows this iter // will return unless there is only a single page returned. func (iter *Iter) NumRows() int { return iter.numRows } // nextIter holds state for fetching a single page in an iterator. // single page might be attempted multiple times due to retries. type nextIter struct { qry *Query pos int oncea sync.Once once sync.Once next *Iter } func (n *nextIter) fetchAsync() { n.oncea.Do(func() { go n.fetch() }) } func (n *nextIter) fetch() *Iter { n.once.Do(func() { // if the query was specifically run on a connection then re-use that // connection when fetching the next results if n.qry.conn != nil { n.next = n.qry.conn.executeQuery(n.qry.Context(), n.qry) } else { n.next = n.qry.session.executeQuery(n.qry) } }) return n.next } type Batch struct { Type BatchType Entries []BatchEntry Cons Consistency routingKey []byte CustomPayload map[string][]byte rt RetryPolicy spec SpeculativeExecutionPolicy trace Tracer observer BatchObserver session *Session serialCons Consistency defaultTimestamp bool defaultTimestampValue int64 context context.Context cancelBatch func() keyspace string metrics *queryMetrics nowInSeconds *int // routingInfo is a pointer because Query can be copied and copyable struct can't hold a mutex. routingInfo *queryRoutingInfo } // Deprecated: use Session.Batch instead // NewBatch creates a new batch operation using defaults defined in the cluster func (s *Session) NewBatch(typ BatchType) *Batch { return s.Batch(typ) } // Batch creates a new batch operation using defaults defined in the cluster func (s *Session) Batch(typ BatchType) *Batch { s.mu.RLock() batch := &Batch{ Type: typ, rt: s.cfg.RetryPolicy, serialCons: s.cfg.SerialConsistency, trace: s.trace, observer: s.batchObserver, session: s, Cons: s.cons, defaultTimestamp: s.cfg.DefaultTimestamp, keyspace: s.cfg.Keyspace, metrics: &queryMetrics{m: make(map[string]*hostMetrics)}, spec: &NonSpeculativeExecution{}, routingInfo: &queryRoutingInfo{}, } s.mu.RUnlock() return batch } // Trace enables tracing of this batch. Look at the documentation of the // Tracer interface to learn more about tracing. func (b *Batch) Trace(trace Tracer) *Batch { b.trace = trace return b } // Observer enables batch-level observer on this batch. // The provided observer will be called every time this batched query is executed. func (b *Batch) Observer(observer BatchObserver) *Batch { b.observer = observer return b } func (b *Batch) Keyspace() string { return b.keyspace } // Batch has no reasonable eqivalent of Query.Table(). func (b *Batch) Table() string { return b.routingInfo.table } // Attempts returns the number of attempts made to execute the batch. func (b *Batch) Attempts() int { return b.metrics.attempts() } func (b *Batch) AddAttempts(i int, host *HostInfo) { b.metrics.attempt(i, 0, host, false) } // Latency returns the average number of nanoseconds to execute a single attempt of the batch. func (b *Batch) Latency() int64 { return b.metrics.latency() } func (b *Batch) AddLatency(l int64, host *HostInfo) { b.metrics.attempt(0, time.Duration(l)*time.Nanosecond, host, false) } // GetConsistency returns the currently configured consistency level for the batch // operation. func (b *Batch) GetConsistency() Consistency { return b.Cons } // SetConsistency sets the currently configured consistency level for the batch // operation. func (b *Batch) SetConsistency(c Consistency) { b.Cons = c } func (b *Batch) Context() context.Context { if b.context == nil { return context.Background() } return b.context } func (b *Batch) IsIdempotent() bool { for _, entry := range b.Entries { if !entry.Idempotent { return false } } return true } func (b *Batch) speculativeExecutionPolicy() SpeculativeExecutionPolicy { return b.spec } func (b *Batch) SpeculativeExecutionPolicy(sp SpeculativeExecutionPolicy) *Batch { b.spec = sp return b } // Query adds the query to the batch operation func (b *Batch) Query(stmt string, args ...interface{}) *Batch { b.Entries = append(b.Entries, BatchEntry{Stmt: stmt, Args: args}) return b } // Bind adds the query to the batch operation and correlates it with a binding callback // that will be invoked when the batch is executed. The binding callback allows the application // to define which query argument values will be marshalled as part of the batch execution. func (b *Batch) Bind(stmt string, bind func(q *QueryInfo) ([]interface{}, error)) { b.Entries = append(b.Entries, BatchEntry{Stmt: stmt, binding: bind}) } func (b *Batch) retryPolicy() RetryPolicy { return b.rt } // RetryPolicy sets the retry policy to use when executing the batch operation func (b *Batch) RetryPolicy(r RetryPolicy) *Batch { b.rt = r return b } func (b *Batch) withContext(ctx context.Context) ExecutableQuery { return b.WithContext(ctx) } // WithContext returns a shallow copy of b with its context // set to ctx. // // The provided context controls the entire lifetime of executing a // query, queries will be canceled and return once the context is // canceled. func (b *Batch) WithContext(ctx context.Context) *Batch { b2 := *b b2.context = ctx return &b2 } // Deprecate: does nothing, cancel the context passed to WithContext func (*Batch) Cancel() { // TODO: delete } // Size returns the number of batch statements to be executed by the batch operation. func (b *Batch) Size() int { return len(b.Entries) } // SerialConsistency sets the consistency level for the // serial phase of conditional updates. That consistency can only be // either SERIAL or LOCAL_SERIAL and if not present, it defaults to // SERIAL. This option will be ignored for anything else that a // conditional update/insert. // // Only available for protocol 3 and above func (b *Batch) SerialConsistency(cons Consistency) *Batch { if !cons.isSerial() { panic("serial consistency can only be SERIAL or LOCAL_SERIAL got " + cons.String()) } b.serialCons = cons return b } // DefaultTimestamp will enable the with default timestamp flag on the query. // If enable, this will replace the server side assigned // timestamp as default timestamp. Note that a timestamp in the query itself // will still override this timestamp. This is entirely optional. // // Only available on protocol >= 3 func (b *Batch) DefaultTimestamp(enable bool) *Batch { b.defaultTimestamp = enable return b } // WithTimestamp will enable the with default timestamp flag on the query // like DefaultTimestamp does. But also allows to define value for timestamp. // It works the same way as USING TIMESTAMP in the query itself, but // should not break prepared query optimization. // // Only available on protocol >= 3 func (b *Batch) WithTimestamp(timestamp int64) *Batch { b.DefaultTimestamp(true) b.defaultTimestampValue = timestamp return b } func (b *Batch) attempt(keyspace string, end, start time.Time, iter *Iter, host *HostInfo) { latency := end.Sub(start) attempt, metricsForHost := b.metrics.attempt(1, latency, host, b.observer != nil) if b.observer == nil { return } statements := make([]string, len(b.Entries)) values := make([][]interface{}, len(b.Entries)) for i, entry := range b.Entries { statements[i] = entry.Stmt values[i] = entry.Args } b.observer.ObserveBatch(b.Context(), ObservedBatch{ Keyspace: keyspace, Statements: statements, Values: values, Start: start, End: end, // Rows not used in batch observations // TODO - might be able to support it when using BatchCAS Host: host, Metrics: metricsForHost, Err: iter.err, Attempt: attempt, }) } func (b *Batch) GetRoutingKey() ([]byte, error) { if b.routingKey != nil { return b.routingKey, nil } if len(b.Entries) == 0 { return nil, nil } entry := b.Entries[0] if entry.binding != nil { // bindings do not have the values let's skip it like Query does. return nil, nil } // try to determine the routing key routingKeyInfo, err := b.session.routingKeyInfo(b.Context(), entry.Stmt, b.keyspace) if err != nil { return nil, err } return createRoutingKey(routingKeyInfo, entry.Args) } func createRoutingKey(routingKeyInfo *routingKeyInfo, values []interface{}) ([]byte, error) { if routingKeyInfo == nil { return nil, nil } if len(routingKeyInfo.indexes) == 1 { // single column routing key routingKey, err := Marshal( routingKeyInfo.types[0], values[routingKeyInfo.indexes[0]], ) if err != nil { return nil, err } return routingKey, nil } // composite routing key buf := bytes.NewBuffer(make([]byte, 0, 256)) for i := range routingKeyInfo.indexes { encoded, err := Marshal( routingKeyInfo.types[i], values[routingKeyInfo.indexes[i]], ) if err != nil { return nil, err } lenBuf := []byte{0x00, 0x00} binary.BigEndian.PutUint16(lenBuf, uint16(len(encoded))) buf.Write(lenBuf) buf.Write(encoded) buf.WriteByte(0x00) } routingKey := buf.Bytes() return routingKey, nil } func (b *Batch) borrowForExecution() { // empty, because Batch has no equivalent of Query.Release() // that would race with speculative executions. } func (b *Batch) releaseAfterExecution() { // empty, because Batch has no equivalent of Query.Release() // that would race with speculative executions. } // GetHostID satisfies ExecutableQuery interface but does noop. func (b *Batch) GetHostID() string { return "" } // SetKeyspace will enable keyspace flag on the query. // It allows to specify the keyspace that the query should be executed in // // Only available on protocol >= 5. func (b *Batch) SetKeyspace(keyspace string) *Batch { b.keyspace = keyspace return b } // WithNowInSeconds will enable the with now_in_seconds flag on the query. // Also, it allows to define now_in_seconds value. // // Only available on protocol >= 5. func (b *Batch) WithNowInSeconds(now int) *Batch { b.nowInSeconds = &now return b } type BatchType byte const ( LoggedBatch BatchType = 0 UnloggedBatch BatchType = 1 CounterBatch BatchType = 2 ) type BatchEntry struct { Stmt string Args []interface{} Idempotent bool binding func(q *QueryInfo) ([]interface{}, error) } type ColumnInfo struct { Keyspace string Table string Name string TypeInfo TypeInfo } func (c ColumnInfo) String() string { return fmt.Sprintf("[column keyspace=%s table=%s name=%s type=%v]", c.Keyspace, c.Table, c.Name, c.TypeInfo) } // routing key indexes LRU cache type routingKeyInfoLRU struct { lru *lru.Cache mu sync.Mutex } type routingKeyInfo struct { indexes []int types []TypeInfo keyspace string table string } func (r *routingKeyInfo) String() string { return fmt.Sprintf("routing key index=%v types=%v", r.indexes, r.types) } func (r *routingKeyInfoLRU) Remove(key string) { r.mu.Lock() r.lru.Remove(key) r.mu.Unlock() } // Max adjusts the maximum size of the cache and cleans up the oldest records if // the new max is lower than the previous value. Not concurrency safe. func (r *routingKeyInfoLRU) Max(max int) { r.mu.Lock() for r.lru.Len() > max { r.lru.RemoveOldest() } r.lru.MaxEntries = max r.mu.Unlock() } type inflightCachedEntry struct { wg sync.WaitGroup err error value interface{} } // Tracer is the interface implemented by query tracers. Tracers have the // ability to obtain a detailed event log of all events that happened during // the execution of a query from Cassandra. Gathering this information might // be essential for debugging and optimizing queries, but this feature should // not be used on production systems with very high load. type Tracer interface { Trace(traceId []byte) } type traceWriter struct { session *Session w io.Writer mu sync.Mutex } // NewTraceWriter returns a simple Tracer implementation that outputs // the event log in a textual format. func NewTraceWriter(session *Session, w io.Writer) Tracer { return &traceWriter{session: session, w: w} } func (t *traceWriter) Trace(traceId []byte) { var ( coordinator string duration int ) iter := t.session.control.query(`SELECT coordinator, duration FROM system_traces.sessions WHERE session_id = ?`, traceId) iter.Scan(&coordinator, &duration) if err := iter.Close(); err != nil { t.mu.Lock() fmt.Fprintln(t.w, "Error:", err) t.mu.Unlock() return } var ( timestamp time.Time activity string source string elapsed int thread string ) t.mu.Lock() defer t.mu.Unlock() fmt.Fprintf(t.w, "Tracing session %016x (coordinator: %s, duration: %v):\n", traceId, coordinator, time.Duration(duration)*time.Microsecond) iter = t.session.control.query(`SELECT event_id, activity, source, source_elapsed, thread FROM system_traces.events WHERE session_id = ?`, traceId) for iter.Scan(&timestamp, &activity, &source, &elapsed, &thread) { fmt.Fprintf(t.w, "%s: %s [%s] (source: %s, elapsed: %d)\n", timestamp.Format("2006/01/02 15:04:05.999999"), activity, thread, source, elapsed) } if err := iter.Close(); err != nil { fmt.Fprintln(t.w, "Error:", err) } } // GetHosts return a list of hosts in the ring the driver knows of. func (s *Session) GetHosts() []*HostInfo { return s.ring.allHosts() } type ObservedQuery struct { Keyspace string Statement string // Values holds a slice of bound values for the query. // Do not modify the values here, they are shared with multiple goroutines. Values []interface{} Start time.Time // time immediately before the query was called End time.Time // time immediately after the query returned // Rows is the number of rows in the current iter. // In paginated queries, rows from previous scans are not counted. // Rows is not used in batch queries and remains at the default value Rows int // Host is the informations about the host that performed the query Host *HostInfo // The metrics per this host Metrics *hostMetrics // Err is the error in the query. // It only tracks network errors or errors of bad cassandra syntax, in particular selects with no match return nil error Err error // Attempt is the index of attempt at executing this query. // The first attempt is number zero and any retries have non-zero attempt number. Attempt int } // QueryObserver is the interface implemented by query observers / stat collectors. // // Experimental, this interface and use may change type QueryObserver interface { // ObserveQuery gets called on every query to cassandra, including all queries in an iterator when paging is enabled. // It doesn't get called if there is no query because the session is closed or there are no connections available. // The error reported only shows query errors, i.e. if a SELECT is valid but finds no matches it will be nil. ObserveQuery(context.Context, ObservedQuery) } type ObservedBatch struct { Keyspace string Statements []string // Values holds a slice of bound values for each statement. // Values[i] are bound values passed to Statements[i]. // Do not modify the values here, they are shared with multiple goroutines. Values [][]interface{} Start time.Time // time immediately before the batch query was called End time.Time // time immediately after the batch query returned // Host is the informations about the host that performed the batch Host *HostInfo // Err is the error in the batch query. // It only tracks network errors or errors of bad cassandra syntax, in particular selects with no match return nil error Err error // The metrics per this host Metrics *hostMetrics // Attempt is the index of attempt at executing this query. // The first attempt is number zero and any retries have non-zero attempt number. Attempt int } // BatchObserver is the interface implemented by batch observers / stat collectors. type BatchObserver interface { // ObserveBatch gets called on every batch query to cassandra. // It also gets called once for each query in a batch. // It doesn't get called if there is no query because the session is closed or there are no connections available. // The error reported only shows query errors, i.e. if a SELECT is valid but finds no matches it will be nil. // Unlike QueryObserver.ObserveQuery it does no reporting on rows read. ObserveBatch(context.Context, ObservedBatch) } type ObservedConnect struct { // Host is the information about the host about to connect Host *HostInfo Start time.Time // time immediately before the dial is called End time.Time // time immediately after the dial returned // Err is the connection error (if any) Err error } // ConnectObserver is the interface implemented by connect observers / stat collectors. type ConnectObserver interface { // ObserveConnect gets called when a new connection to cassandra is made. ObserveConnect(ObservedConnect) } type Error struct { Code int Message string } func (e Error) Error() string { return e.Message } var ( ErrNotFound = errors.New("not found") ErrUnavailable = errors.New("unavailable") ErrUnsupported = errors.New("feature not supported") ErrTooManyStmts = errors.New("too many statements") ErrUseStmt = errors.New("use statements aren't supported. Please see https://github.com/apache/cassandra-gocql-driver for explanation.") ErrSessionClosed = errors.New("session has been closed") ErrNoConnections = errors.New("gocql: no hosts available in the pool") ErrNoKeyspace = errors.New("no keyspace provided") ErrKeyspaceDoesNotExist = errors.New("keyspace does not exist") ErrNoMetadata = errors.New("no metadata available") ) type ErrProtocol struct{ error } func NewErrProtocol(format string, args ...interface{}) error { return ErrProtocol{fmt.Errorf(format, args...)} } // BatchSizeMaximum is the maximum number of statements a batch operation can have. // This limit is set by cassandra and could change in the future. const BatchSizeMaximum = 65535