public SingularValueDecomposition()

in commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/linear/SingularValueDecomposition.java [87:480]


    public SingularValueDecomposition(final RealMatrix matrix) {
        final double[][] A;

         // "m" is always the largest dimension.
        if (matrix.getRowDimension() < matrix.getColumnDimension()) {
            transposed = true;
            A = matrix.transpose().getData();
            m = matrix.getColumnDimension();
            n = matrix.getRowDimension();
        } else {
            transposed = false;
            A = matrix.getData();
            m = matrix.getRowDimension();
            n = matrix.getColumnDimension();
        }

        singularValues = new double[n];
        final double[][] U = new double[m][n];
        final double[][] V = new double[n][n];
        final double[] e = new double[n];
        final double[] work = new double[m];
        // Reduce A to bidiagonal form, storing the diagonal elements
        // in s and the super-diagonal elements in e.
        final int nct = JdkMath.min(m - 1, n);
        final int nrt = JdkMath.max(0, n - 2);
        for (int k = 0; k < JdkMath.max(nct, nrt); k++) {
            if (k < nct) {
                // Compute the transformation for the k-th column and
                // place the k-th diagonal in s[k].
                // Compute 2-norm of k-th column without under/overflow.
                singularValues[k] = 0;
                for (int i = k; i < m; i++) {
                    singularValues[k] = JdkMath.hypot(singularValues[k], A[i][k]);
                }
                if (singularValues[k] != 0) {
                    if (A[k][k] < 0) {
                        singularValues[k] = -singularValues[k];
                    }
                    for (int i = k; i < m; i++) {
                        A[i][k] /= singularValues[k];
                    }
                    A[k][k] += 1;
                }
                singularValues[k] = -singularValues[k];
            }
            for (int j = k + 1; j < n; j++) {
                if (k < nct &&
                    singularValues[k] != 0) {
                    // Apply the transformation.
                    double t = 0;
                    for (int i = k; i < m; i++) {
                        t += A[i][k] * A[i][j];
                    }
                    t = -t / A[k][k];
                    for (int i = k; i < m; i++) {
                        A[i][j] += t * A[i][k];
                    }
                }
                // Place the k-th row of A into e for the
                // subsequent calculation of the row transformation.
                e[j] = A[k][j];
            }
            if (k < nct) {
                // Place the transformation in U for subsequent back
                // multiplication.
                for (int i = k; i < m; i++) {
                    U[i][k] = A[i][k];
                }
            }
            if (k < nrt) {
                // Compute the k-th row transformation and place the
                // k-th super-diagonal in e[k].
                // Compute 2-norm without under/overflow.
                e[k] = 0;
                for (int i = k + 1; i < n; i++) {
                    e[k] = JdkMath.hypot(e[k], e[i]);
                }
                if (e[k] != 0) {
                    if (e[k + 1] < 0) {
                        e[k] = -e[k];
                    }
                    for (int i = k + 1; i < n; i++) {
                        e[i] /= e[k];
                    }
                    e[k + 1] += 1;
                }
                e[k] = -e[k];
                if (k + 1 < m &&
                    e[k] != 0) {
                    // Apply the transformation.
                    for (int i = k + 1; i < m; i++) {
                        work[i] = 0;
                    }
                    for (int j = k + 1; j < n; j++) {
                        for (int i = k + 1; i < m; i++) {
                            work[i] += e[j] * A[i][j];
                        }
                    }
                    for (int j = k + 1; j < n; j++) {
                        final double t = -e[j] / e[k + 1];
                        for (int i = k + 1; i < m; i++) {
                            A[i][j] += t * work[i];
                        }
                    }
                }

                // Place the transformation in V for subsequent
                // back multiplication.
                for (int i = k + 1; i < n; i++) {
                    V[i][k] = e[i];
                }
            }
        }
        // Set up the final bidiagonal matrix or order p.
        int p = n;
        if (nct < n) {
            singularValues[nct] = A[nct][nct];
        }
        if (m < p) {
            singularValues[p - 1] = 0;
        }
        if (nrt + 1 < p) {
            e[nrt] = A[nrt][p - 1];
        }
        e[p - 1] = 0;

        // Generate U.
        for (int j = nct; j < n; j++) {
            for (int i = 0; i < m; i++) {
                U[i][j] = 0;
            }
            U[j][j] = 1;
        }
        for (int k = nct - 1; k >= 0; k--) {
            if (singularValues[k] != 0) {
                for (int j = k + 1; j < n; j++) {
                    double t = 0;
                    for (int i = k; i < m; i++) {
                        t += U[i][k] * U[i][j];
                    }
                    t = -t / U[k][k];
                    for (int i = k; i < m; i++) {
                        U[i][j] += t * U[i][k];
                    }
                }
                for (int i = k; i < m; i++) {
                    U[i][k] = -U[i][k];
                }
                U[k][k] = 1 + U[k][k];
                for (int i = 0; i < k - 1; i++) {
                    U[i][k] = 0;
                }
            } else {
                for (int i = 0; i < m; i++) {
                    U[i][k] = 0;
                }
                U[k][k] = 1;
            }
        }

        // Generate V.
        for (int k = n - 1; k >= 0; k--) {
            if (k < nrt &&
                e[k] != 0) {
                for (int j = k + 1; j < n; j++) {
                    double t = 0;
                    for (int i = k + 1; i < n; i++) {
                        t += V[i][k] * V[i][j];
                    }
                    t = -t / V[k + 1][k];
                    for (int i = k + 1; i < n; i++) {
                        V[i][j] += t * V[i][k];
                    }
                }
            }
            for (int i = 0; i < n; i++) {
                V[i][k] = 0;
            }
            V[k][k] = 1;
        }

        // Main iteration loop for the singular values.
        final int pp = p - 1;
        while (p > 0) {
            int k;
            int kase;
            // Here is where a test for too many iterations would go.
            // This section of the program inspects for
            // negligible elements in the s and e arrays.  On
            // completion the variables kase and k are set as follows.
            // kase = 1     if s(p) and e[k-1] are negligible and k<p
            // kase = 2     if s(k) is negligible and k<p
            // kase = 3     if e[k-1] is negligible, k<p, and
            //              s(k), ..., s(p) are not negligible (qr step).
            // kase = 4     if e(p-1) is negligible (convergence).
            for (k = p - 2; k >= 0; k--) {
                final double threshold
                    = TINY + EPS * (JdkMath.abs(singularValues[k]) +
                                    JdkMath.abs(singularValues[k + 1]));

                // the following condition is written this way in order
                // to break out of the loop when NaN occurs, writing it
                // as "if (JdkMath.abs(e[k]) <= threshold)" would loop
                // indefinitely in case of NaNs because comparison on NaNs
                // always return false, regardless of what is checked
                // see issue MATH-947
                if (!(JdkMath.abs(e[k]) > threshold)) {
                    e[k] = 0;
                    break;
                }
            }

            if (k == p - 2) {
                kase = 4;
            } else {
                int ks;
                for (ks = p - 1; ks >= k; ks--) {
                    if (ks == k) {
                        break;
                    }
                    final double t = (ks != p ? JdkMath.abs(e[ks]) : 0) +
                        (ks != k + 1 ? JdkMath.abs(e[ks - 1]) : 0);
                    if (JdkMath.abs(singularValues[ks]) <= TINY + EPS * t) {
                        singularValues[ks] = 0;
                        break;
                    }
                }
                if (ks == k) {
                    kase = 3;
                } else if (ks == p - 1) {
                    kase = 1;
                } else {
                    kase = 2;
                    k = ks;
                }
            }
            k++;
            // Perform the task indicated by kase.
            double f;
            switch (kase) {
                // Deflate negligible s(p).
                case 1:
                    f = e[p - 2];
                    e[p - 2] = 0;
                    for (int j = p - 2; j >= k; j--) {
                        double t = JdkMath.hypot(singularValues[j], f);
                        final double cs = singularValues[j] / t;
                        final double sn = f / t;
                        singularValues[j] = t;
                        if (j != k) {
                            f = -sn * e[j - 1];
                            e[j - 1] = cs * e[j - 1];
                        }

                        for (int i = 0; i < n; i++) {
                            t = cs * V[i][j] + sn * V[i][p - 1];
                            V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
                            V[i][j] = t;
                        }
                    }
                    break;
                // Split at negligible s(k).
                case 2:
                    f = e[k - 1];
                    e[k - 1] = 0;
                    for (int j = k; j < p; j++) {
                        double t = JdkMath.hypot(singularValues[j], f);
                        final double cs = singularValues[j] / t;
                        final double sn = f / t;
                        singularValues[j] = t;
                        f = -sn * e[j];
                        e[j] = cs * e[j];

                        for (int i = 0; i < m; i++) {
                            t = cs * U[i][j] + sn * U[i][k - 1];
                            U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
                            U[i][j] = t;
                        }
                    }
                    break;
                // Perform one qr step.
                case 3:
                    // Calculate the shift.
                    final double maxPm1Pm2 = JdkMath.max(JdkMath.abs(singularValues[p - 1]),
                                                          JdkMath.abs(singularValues[p - 2]));
                    final double scale = JdkMath.max(JdkMath.max(JdkMath.max(maxPm1Pm2,
                                                                                JdkMath.abs(e[p - 2])),
                                                                   JdkMath.abs(singularValues[k])),
                                                      JdkMath.abs(e[k]));
                    final double sp = singularValues[p - 1] / scale;
                    final double spm1 = singularValues[p - 2] / scale;
                    final double epm1 = e[p - 2] / scale;
                    final double sk = singularValues[k] / scale;
                    final double ek = e[k] / scale;
                    final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
                    final double c = (sp * epm1) * (sp * epm1);
                    double shift = 0;
                    if (b != 0 ||
                        c != 0) {
                        shift = JdkMath.sqrt(b * b + c);
                        if (b < 0) {
                            shift = -shift;
                        }
                        shift = c / (b + shift);
                    }
                    f = (sk + sp) * (sk - sp) + shift;
                    double g = sk * ek;
                    // Chase zeros.
                    for (int j = k; j < p - 1; j++) {
                        double t = JdkMath.hypot(f, g);
                        double cs = f / t;
                        double sn = g / t;
                        if (j != k) {
                            e[j - 1] = t;
                        }
                        f = cs * singularValues[j] + sn * e[j];
                        e[j] = cs * e[j] - sn * singularValues[j];
                        g = sn * singularValues[j + 1];
                        singularValues[j + 1] = cs * singularValues[j + 1];

                        for (int i = 0; i < n; i++) {
                            t = cs * V[i][j] + sn * V[i][j + 1];
                            V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
                            V[i][j] = t;
                        }
                        t = JdkMath.hypot(f, g);
                        cs = f / t;
                        sn = g / t;
                        singularValues[j] = t;
                        f = cs * e[j] + sn * singularValues[j + 1];
                        singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1];
                        g = sn * e[j + 1];
                        e[j + 1] = cs * e[j + 1];
                        if (j < m - 1) {
                            for (int i = 0; i < m; i++) {
                                t = cs * U[i][j] + sn * U[i][j + 1];
                                U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
                                U[i][j] = t;
                            }
                        }
                    }
                    e[p - 2] = f;
                    break;
                // Convergence.
                default:
                    // Make the singular values positive.
                    if (singularValues[k] <= 0) {
                        singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0;

                        for (int i = 0; i <= pp; i++) {
                            V[i][k] = -V[i][k];
                        }
                    }
                    // Order the singular values.
                    while (k < pp) {
                        if (singularValues[k] >= singularValues[k + 1]) {
                            break;
                        }
                        double t = singularValues[k];
                        singularValues[k] = singularValues[k + 1];
                        singularValues[k + 1] = t;
                        if (k < n - 1) {
                            for (int i = 0; i < n; i++) {
                                t = V[i][k + 1];
                                V[i][k + 1] = V[i][k];
                                V[i][k] = t;
                            }
                        }
                        if (k < m - 1) {
                            for (int i = 0; i < m; i++) {
                                t = U[i][k + 1];
                                U[i][k + 1] = U[i][k];
                                U[i][k] = t;
                            }
                        }
                        k++;
                    }
                    p--;
                    break;
            }
        }

        // Set the small value tolerance used to calculate rank and pseudo-inverse
        tol = JdkMath.max(m * singularValues[0] * EPS,
                           JdkMath.sqrt(Precision.SAFE_MIN));

        if (!transposed) {
            cachedU = MatrixUtils.createRealMatrix(U);
            cachedV = MatrixUtils.createRealMatrix(V);
        } else {
            cachedU = MatrixUtils.createRealMatrix(V);
            cachedV = MatrixUtils.createRealMatrix(U);
        }
    }