in commons-statistics-inference/src/main/java/org/apache/commons/statistics/inference/BrentOptimizer.java [160:314]
PointValuePair optimize(DoubleUnaryOperator func,
double lo, double hi,
double mid, double fMid) {
double a;
double b;
if (lo < hi) {
a = lo;
b = hi;
} else {
a = hi;
b = lo;
}
if (!(a < mid && mid < b)) {
throw new InferenceException("Invalid bounds: (%s, %s) with start %s", a, b, mid);
}
double x = mid;
double v = x;
double w = x;
double d = 0;
double e = 0;
double fx = fMid;
double fv = fx;
double fw = fx;
// Best point encountered so far (which is the initial guess).
double bestX = x;
double bestFx = fx;
// No test for iteration count.
// Note that the termination criterion is based purely on the size of the current
// bracket and the current point x. If the function evaluates NaN then golden
// section steps are taken.
evaluations = 0;
for (;;) {
final double m = 0.5 * (a + b);
final double tol1 = relativeThreshold * Math.abs(x) + absoluteThreshold;
final double tol2 = 2 * tol1;
// Default termination (Brent's criterion).
if (Math.abs(x - m) <= tol2 - 0.5 * (b - a)) {
return PointValuePair.of(bestX, bestFx);
}
if (Math.abs(e) > tol1) {
// Fit parabola.
double r = (x - w) * (fx - fv);
double q = (x - v) * (fx - fw);
double p = (x - v) * q - (x - w) * r;
q = 2 * (q - r);
if (q > 0) {
p = -p;
} else {
q = -q;
}
r = e;
e = d;
if (p > q * (a - x) &&
p < q * (b - x) &&
Math.abs(p) < Math.abs(0.5 * q * r)) {
// Parabolic interpolation step.
d = p / q;
final double u = x + d;
// f must not be evaluated too close to a or b.
if (u - a < tol2 || b - u < tol2) {
if (x <= m) {
d = tol1;
} else {
d = -tol1;
}
}
} else {
// Golden section step.
if (x < m) {
e = b - x;
} else {
e = a - x;
}
d = GOLDEN_SECTION * e;
}
} else {
// Golden section step.
if (x < m) {
e = b - x;
} else {
e = a - x;
}
d = GOLDEN_SECTION * e;
}
// Update by at least "tol1".
// Here d is never NaN so the evaluation point u is always finite.
final double u;
if (Math.abs(d) < tol1) {
if (d >= 0) {
u = x + tol1;
} else {
u = x - tol1;
}
} else {
u = x + d;
}
evaluations++;
final double fu = func.applyAsDouble(u);
// Maintain the best encountered result
if (fu < bestFx) {
bestX = u;
bestFx = fu;
}
// Note:
// Here the use of a convergence checker on f(x) previous vs current has been removed.
// Typically when the checker requires a very small relative difference
// the optimizer will stop before, or soon after, on Brent's criterion when that is
// configured with the smallest recommended convergence criteria.
// Update a, b, v, w and x.
if (fu <= fx) {
if (u < x) {
b = x;
} else {
a = x;
}
v = w;
fv = fw;
w = x;
fw = fx;
x = u;
fx = fu;
} else {
if (u < x) {
a = u;
} else {
b = u;
}
if (fu <= fw ||
Precision.equals(w, x)) {
v = w;
fv = fw;
w = u;
fw = fu;
} else if (fu <= fv ||
Precision.equals(v, x) ||
Precision.equals(v, w)) {
v = u;
fv = fu;
}
}
}
}